BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11158383)

  • 41. Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents.
    Triant DA; DeWoody JA
    Genetica; 2008 Jan; 132(1):21-33. PubMed ID: 17333478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slow DNA loss in the gigantic genomes of salamanders.
    Sun C; López Arriaza JR; Mueller RL
    Genome Biol Evol; 2012; 4(12):1340-8. PubMed ID: 23175715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae).
    Mabuchi K; Miya M; Satoh TP; Westneat MW; Nishida M
    J Mol Evol; 2004 Sep; 59(3):287-97. PubMed ID: 15553084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of the NANOG pseudogene family in the human and chimpanzee genomes.
    Fairbanks DJ; Maughan PJ
    BMC Evol Biol; 2006 Feb; 6():12. PubMed ID: 16469101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The complete mitochondrial genomes of three grasshoppers, Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis (Orthoptera: Pamphagidae).
    Zhang HL; Zeng HH; Huang Y; Zheng ZM
    Gene; 2013 Mar; 517(1):89-98. PubMed ID: 23291499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Perspectives: evolution. Is bigger better in cricket?
    Capy P
    Science; 2000 Feb; 287(5455):985-6. PubMed ID: 10691573
    [No Abstract]   [Full Text] [Related]  

  • 47. Extensive mitochondrial DNA transfer in a rapidly evolving rodent has been mediated by independent insertion events and by duplications.
    Triant DA; DeWoody JA
    Gene; 2007 Oct; 401(1-2):61-70. PubMed ID: 17714890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids.
    Collura RV; Stewart CB
    Nature; 1995 Nov; 378(6556):485-9. PubMed ID: 7477403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The genes for cytochrome b, ND 4L, ND6 and two tRNAs from the mitochondrial genome of the locust, Locusta migratoria.
    Rippe RM; Gellissen G
    Curr Genet; 1994 Feb; 25(2):135-41. PubMed ID: 8087882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila.
    Petrov DA; Hartl DL
    Gene; 1997 Dec; 205(1-2):279-89. PubMed ID: 9461402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals.
    Lopez JV; Culver M; Stephens JC; Johnson WE; O'Brien SJ
    Mol Biol Evol; 1997 Mar; 14(3):277-86. PubMed ID: 9066795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila.
    Tsujino F; Kosemura A; Inohira K; Hara T; Otsuka YF; Obara MK; Matsuura ET
    J Mol Evol; 2002 Nov; 55(5):573-83. PubMed ID: 12399931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rates of DNA duplication and mitochondrial DNA insertion in the human genome.
    Bensasson D; Feldman MW; Petrov DA
    J Mol Evol; 2003 Sep; 57(3):343-54. PubMed ID: 14629044
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phylogenetic analysis of DNA length mutations in a repetitive region of the Hawaiian Drosophila yolk protein gene Yp2.
    Ho KF; Craddock EM; Piano F; Kambysellis MP
    J Mol Evol; 1996 Aug; 43(2):116-24. PubMed ID: 8660436
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1.
    Laroche J; Bousquet J
    Mol Biol Evol; 1999 Apr; 16(4):441-52. PubMed ID: 10331271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential gene flow in natural populations of the Drosophila ananassae species cluster inferred from a nuclear mitochondrial pseudogene.
    Sawamura K; Koganebuchi K; Sato H; Kamiya K; Matsuda M; Oguma Y
    Mol Phylogenet Evol; 2008 Sep; 48(3):1087-93. PubMed ID: 18621132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary trail of the mitochondrial genome as based on human 16S rDNA pseudogenes.
    Hu G; Thilly WG
    Gene; 1994 Sep; 147(2):197-204. PubMed ID: 7926799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudogene evolution in Drosophila suggests a high rate of DNA loss.
    Petrov DA; Chao YC; Stephenson EC; Hartl DL
    Mol Biol Evol; 1998 Nov; 15(11):1562-7. PubMed ID: 12572619
    [No Abstract]   [Full Text] [Related]  

  • 60. Reevaluation of phylogeny in the Drosophila obscura species group based on combined analysis of nucleotide sequences.
    O'Grady PM
    Mol Phylogenet Evol; 1999 Jul; 12(2):124-39. PubMed ID: 10381316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.