These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11158510)

  • 1. Proportional assist ventilation decreases thoracoabdominal asynchrony and chest wall distortion in preterm infants.
    Musante G; Schulze A; Gerhardt T; Everett R; Claure N; Schaller P; Bancalari E
    Pediatr Res; 2001 Feb; 49(2):175-80. PubMed ID: 11158510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of non-invasive pressure support ventilation (NI-PSV) on ventilation and respiratory effort in very low birth weight infants.
    Ali N; Claure N; Alegria X; D'Ugard C; Organero R; Bancalari E
    Pediatr Pulmonol; 2007 Aug; 42(8):704-10. PubMed ID: 17595037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inspiratory resistive loading on chest wall motion and ventilation: differences between preterm and full-term infants.
    Deoras KS; Greenspan JS; Wolfson MR; Keklikian EN; Shaffer TH; Allen JL
    Pediatr Res; 1992 Nov; 32(5):589-94. PubMed ID: 1480462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracoabdominal asynchrony in infants with airflow obstruction.
    Allen JL; Wolfson MR; McDowell K; Shaffer TH
    Am Rev Respir Dis; 1990 Feb; 141(2):337-42. PubMed ID: 2137313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants.
    Owen LS; Morley CJ; Dawson JA; Davis PG
    Arch Dis Child Fetal Neonatal Ed; 2011 Nov; 96(6):F422-8. PubMed ID: 21335623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-triggered ventilation: a comparison of tidal volume and chestwall and abdominal motion as trigger signals.
    Nikischin W; Gerhardt T; Everett R; Gonzalez A; Hummler H; Bancalari E
    Pediatr Pulmonol; 1996 Jul; 22(1):28-34. PubMed ID: 8856801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency chest wall compression in cats with normal lungs.
    Eyal FG; Hayek Z; Armengol J; Jones R
    Pediatr Res; 1987 Feb; 21(2):183-7. PubMed ID: 3547282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chest wall mechanics during pressure support ventilation.
    Aliverti A; Carlesso E; Dellacà R; Pelosi P; Chiumello D; Pedotti A; Gattinoni L
    Crit Care; 2006; 10(2):R54. PubMed ID: 16584534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using conventional infant ventilators at unconventional rates.
    Boros SJ; Bing DR; Mammel MC; Hagen E; Gordon MJ
    Pediatrics; 1984 Oct; 74(4):487-92. PubMed ID: 6384912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hyperinflation on rib cage-abdominal motion.
    Jubran A; Tobin MJ
    Am Rev Respir Dis; 1992 Dec; 146(6):1378-82. PubMed ID: 1456551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of continuous positive airway pressure on the ventilatory response to CO2 in preterm infants.
    Durand M; McCann E; Brady JP
    Pediatrics; 1983 Apr; 71(4):634-8. PubMed ID: 6403913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nasal continuous and biphasic positive airway pressure on lung volume in preterm infants.
    Miedema M; van der Burg PS; Beuger S; de Jongh FH; Frerichs I; van Kaam AH
    J Pediatr; 2013 Apr; 162(4):691-7. PubMed ID: 23102792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of propofol anaesthesia on thoraco-abdominal volume variations during spontaneous breathing and mechanical ventilation.
    Aliverti A; Kostic P; Lo Mauro A; Andersson-Olerud M; Quaranta M; Pedotti A; Hedenstierna G; Frykholm P
    Acta Anaesthesiol Scand; 2011 May; 55(5):588-96. PubMed ID: 21385159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial.
    Finer NN; Carlo WA; Duara S; Fanaroff AA; Donovan EF; Wright LL; Kandefer S; Poole WK;
    Pediatrics; 2004 Sep; 114(3):651-7. PubMed ID: 15342835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thoracoabdominal asynchrony in a virtual preterm infant: computational modeling and analysis.
    Foster RR; Smith B; Ellwein Fix L
    Am J Physiol Lung Cell Mol Physiol; 2023 Aug; 325(2):L190-L205. PubMed ID: 37338113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of tidal ventilation in preterm and term newborn infants using electromagnetic inductance plethysmography.
    Williams EM; Pickerd N; Eriksen M; Øygarden K; Kotecha S
    Physiol Meas; 2011 Nov; 32(11):1833-45. PubMed ID: 22027661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.
    Habib RH; Pyon KH; Courtney SE; Aghai ZH
    J Appl Physiol (1985); 2003 May; 94(5):1933-40. PubMed ID: 12524380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of chest wall distortion and esophageal catheter position on esophageal manometry in preterm infants.
    Silva Neto G; Gerhardt TO; Claure N; Duara S; Bancalari E
    Pediatr Res; 1995 May; 37(5):617-22. PubMed ID: 7603780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chest wall motion in neonates utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    J Perinatol; 1994; 14(2):101-5. PubMed ID: 8014690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of continuous positive airway pressure on diaphragm dimensions in preterm infants.
    Rehan VK; Laiprasert J; Nakashima JM; Wallach M; McCool FD
    J Perinatol; 2001 Dec; 21(8):521-4. PubMed ID: 11774012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.