These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11158934)

  • 1. Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria.
    Rasmussen UF; Rasmussen HN; Krustrup P; Quistorff B; Saltin B; Bangsbo J
    Am J Physiol Endocrinol Metab; 2001 Feb; 280(2):E301-7. PubMed ID: 11158934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human skeletal muscle mitochondrial capacity.
    Rasmussen UF; Rasmussen HN
    Acta Physiol Scand; 2000 Apr; 168(4):473-80. PubMed ID: 10759584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human quadriceps muscle mitochondria: a functional characterization.
    Rasmussen UF; Rasmussen HN
    Mol Cell Biochem; 2000 May; 208(1-2):37-44. PubMed ID: 10939626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps.
    Rasmussen UF; Vielwerth SE; Rasmussen HN
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):435-46. PubMed ID: 15123217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
    Tonkonogi M; Sahlin K
    Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity.
    Rasmussen UF; Krustrup P; Kjaer M; Rasmussen HN
    Pflugers Arch; 2003 May; 446(2):270-8. PubMed ID: 12739165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content.
    Kerner J; Turkaly PJ; Minkler PE; Hoppel CL
    Am J Physiol Endocrinol Metab; 2001 Nov; 281(5):E1054-62. PubMed ID: 11595663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle.
    Starritt EC; Angus D; Hargreaves M
    J Appl Physiol (1985); 1999 Feb; 86(2):450-4. PubMed ID: 9931175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.
    Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K
    J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans.
    Krustrup P; Söderlund K; Mohr M; González-Alonso J; Bangsbo J
    Pflugers Arch; 2004 Oct; 449(1):56-65. PubMed ID: 15290298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes.
    Jacobs RA; Lundby C
    J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise.
    Cettolo V; Cautero M; Tam E; Francescato MP
    Eur J Appl Physiol; 2007 Apr; 99(6):593-604. PubMed ID: 17206437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.
    Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG
    J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.
    Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K
    Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of muscle contraction on cytochrome a,a3 redox state.
    Duhaylongsod FG; Griebel JA; Bacon DS; Wolfe WG; Piantadosi CA
    J Appl Physiol (1985); 1993 Aug; 75(2):790-7. PubMed ID: 8226483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training.
    Berthon P; Freyssenet D; Chatard JC; Castells J; Mujika I; Geyssant A; Guezennec CY; Denis C
    Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle.
    Rasmussen UF; Krustrup P; Bangsbo J; Rasmussen HN
    Pflugers Arch; 2001 Nov; 443(2):180-7. PubMed ID: 11713642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: effects of hyperoxia.
    Mourtzakis M; González-Alonso J; Graham TE; Saltin B
    J Appl Physiol (1985); 2004 Nov; 97(5):1796-802. PubMed ID: 15208296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of training effects on skeletal muscle mitochondrial enzymes and myoglobin in man.
    Svedenhag J; Henriksson J; Sylvén C
    Acta Physiol Scand; 1983 Feb; 117(2):213-8. PubMed ID: 6306998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.