These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11158979)

  • 61. Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration.
    Duan C; Bauchat JR; Hsieh T
    Circ Res; 2000 Jan 7-21; 86(1):15-23. PubMed ID: 10625300
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concomitant activation of the PI3K-Akt and the Ras-ERK signaling pathways is essential for transformation by the V-SEA tyrosine kinase oncogene.
    Agazie Y; Ischenko I; Hayman M
    Oncogene; 2002 Jan; 21(5):697-707. PubMed ID: 11850798
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proliferation of CECs requires dual signaling through both MAPK/ERK and PI 3-K/Akt pathways.
    Zubilewicz A; Hecquet C; Jeanny J; Soubrane G; Courtois Y; Mascarelli F
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):488-96. PubMed ID: 11157888
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones.
    Perkinton MS; Ip JK; Wood GL; Crossthwaite AJ; Williams RJ
    J Neurochem; 2002 Jan; 80(2):239-54. PubMed ID: 11902114
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Epigallocatechin suppression of proliferation of vascular smooth muscle cells: correlation with c-jun and JNK.
    Lu LH; Lee SS; Huang HC
    Br J Pharmacol; 1998 Jul; 124(6):1227-37. PubMed ID: 9720795
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibitory mechanism of tranilast in human coronary artery smooth muscle cells proliferation, due to blockade of PDGF-BB-receptors.
    Watanabe S; Matsuda A; Suzuki Y; Kondo K; Ikeda Y; Hashimoto H; Umemura K
    Br J Pharmacol; 2000 May; 130(2):307-14. PubMed ID: 10807667
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of L-type calcium channel blocking in epidermal growth factor receptor-independent activation of extracellular signal regulated kinase 1/2.
    Yin X; Polidano E; Faverdin C; Marche P
    J Hypertens; 2005 Feb; 23(2):337-50. PubMed ID: 15662222
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells.
    Nakagami H; Morishita R; Yamamoto K; Taniyama Y; Aoki M; Matsumoto K; Nakamura T; Kaneda Y; Horiuchi M; Ogihara T
    Hypertension; 2001 Feb; 37(2 Pt 2):581-6. PubMed ID: 11230338
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: implications for insulin resistance.
    Carvalheira JB; Calegari VC; Zecchin HG; Nadruz W; GuimarĂ£es RB; Ribeiro EB; Franchini KG; Velloso LA; Saad MJ
    Endocrinology; 2003 Dec; 144(12):5604-14. PubMed ID: 12960006
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lysophosphatidylcholine activates extracellular signal-regulated kinases 1/2 through reactive oxygen species in rat vascular smooth muscle cells.
    Yamakawa T; Tanaka S; Yamakawa Y; Kamei J; Numaguchi K; Motley ED; Inagami T; Eguchi S
    Arterioscler Thromb Vasc Biol; 2002 May; 22(5):752-8. PubMed ID: 12006386
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells.
    Shelton JG; Steelman LS; Lee JT; Knapp SL; Blalock WL; Moye PW; Franklin RA; Pohnert SC; Mirza AM; McMahon M; McCubrey JA
    Oncogene; 2003 Apr; 22(16):2478-92. PubMed ID: 12717425
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Activation of protein kinase B by the A(1)-adenosine receptor in DDT(1)MF-2 cells.
    Germack R; Dickenson JM
    Br J Pharmacol; 2000 Jun; 130(4):867-74. PubMed ID: 10864894
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sphingosine-1-phosphate induces G(alphai)-coupled, PI3K/ras-dependent smooth muscle cell migration.
    Tanski W; Roztocil E; Davies MG
    J Surg Res; 2002 Nov; 108(1):98-106. PubMed ID: 12443721
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Essential roles of Raf/extracellular signal-regulated kinase/mitogen-activated protein kinase pathway, YY1, and Ca2+ influx in growth arrest of human vascular smooth muscle cells by bilirubin.
    Stoeckius M; Erat A; Fujikawa T; Hiromura M; Koulova A; Otterbein L; Bianchi C; Tobiasch E; Dagon Y; Sellke FW; Usheva A
    J Biol Chem; 2012 May; 287(19):15418-26. PubMed ID: 22262839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High glucose inhibits apoptosis in human coronary artery smooth muscle cells by increasing bcl-xL and bfl-1/A1.
    Sakuma H; Yamamoto M; Okumura M; Kojima T; Maruyama T; Yasuda K
    Am J Physiol Cell Physiol; 2002 Aug; 283(2):C422-8. PubMed ID: 12107051
    [TBL] [Abstract][Full Text] [Related]  

  • 76. ATP- and polyphosphate-mediated stimulation of pp60c-src kinase activity in extracts from vascular smooth muscle.
    Di Salvo J; Gifford D; Kokkinakis A
    J Biol Chem; 1989 Jun; 264(18):10773-8. PubMed ID: 2543681
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The anti-mitogenic activity of 17beta-estradiol in coronary smooth muscle cells correlates with protein binding to its responsive element.
    Ramos KS; Sadhu DN; Meininger CJ; Chilian WM
    In Vitro Cell Dev Biol Anim; 1997; 33(10):738-41. PubMed ID: 9466675
    [No Abstract]   [Full Text] [Related]  

  • 78. Extracellular ATP: a central player in the regulation of vascular smooth muscle phenotype. Focus on "Dual role of PKA in phenotype modulation of vascular smooth muscle cells by extracellular ATP".
    Erlinge D
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C260-2. PubMed ID: 15238358
    [No Abstract]   [Full Text] [Related]  

  • 79. Cardiac purinergic signalling in health and disease.
    Burnstock G; Pelleg A
    Purinergic Signal; 2015 Mar; 11(1):1-46. PubMed ID: 25527177
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function.
    Bilbao PS; Katz S; Boland R
    Purinergic Signal; 2012 Mar; 8(1):91-103. PubMed ID: 21887492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.