These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11159330)
1. Analysis of conservation and substitutions of secondary structure elements within protein superfamilies. Mizuguchi K; Blundell T Bioinformatics; 2000 Dec; 16(12):1111-9. PubMed ID: 11159330 [TBL] [Abstract][Full Text] [Related]
2. AL2CO: calculation of positional conservation in a protein sequence alignment. Pei J; Grishin NV Bioinformatics; 2001 Aug; 17(8):700-12. PubMed ID: 11524371 [TBL] [Abstract][Full Text] [Related]
3. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Shi J; Blundell TL; Mizuguchi K J Mol Biol; 2001 Jun; 310(1):243-57. PubMed ID: 11419950 [TBL] [Abstract][Full Text] [Related]
4. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases. Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310 [TBL] [Abstract][Full Text] [Related]
5. PASS2: an automated database of protein alignments organised as structural superfamilies. Bhaduri A; Pugalenthi G; Sowdhamini R BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245 [TBL] [Abstract][Full Text] [Related]
6. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410 [TBL] [Abstract][Full Text] [Related]
7. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
8. Identification of local variations within secondary structures of proteins. Kumar P; Bansal M Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1077-86. PubMed ID: 25945573 [TBL] [Abstract][Full Text] [Related]
9. Connectivity independent protein-structure alignment: a hierarchical approach. Kolbeck B; May P; Schmidt-Goenner T; Steinke T; Knapp EW BMC Bioinformatics; 2006 Nov; 7():510. PubMed ID: 17118190 [TBL] [Abstract][Full Text] [Related]
10. SMoS: a database of structural motifs of protein superfamilies. Chakrabarti S; Venkatramanan K; Sowdhamini R Protein Eng; 2003 Nov; 16(11):791-3. PubMed ID: 14631067 [TBL] [Abstract][Full Text] [Related]
11. PASS2: a semi-automated database of protein alignments organised as structural superfamilies. Mallika V; Bhaduri A; Sowdhamini R Nucleic Acids Res; 2002 Jan; 30(1):284-8. PubMed ID: 11752316 [TBL] [Abstract][Full Text] [Related]
12. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies. Michnick SW; Shakhnovich E Fold Des; 1998; 3(4):239-51. PubMed ID: 9710570 [TBL] [Abstract][Full Text] [Related]
13. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. Rice DW; Eisenberg D J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128 [TBL] [Abstract][Full Text] [Related]
14. PASS2.7: a database containing structure-based sequence alignments and associated features of protein domain superfamilies from SCOPe. Bhattacharyya T; Nayak S; Goswami S; Gadiyaram V; Mathew OK; Sowdhamini R Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35411388 [TBL] [Abstract][Full Text] [Related]
15. The CATH Dictionary of Homologous Superfamilies (DHS): a consensus approach for identifying distant structural homologues. Bray JE; Todd AE; Pearl FM; Thornton JM; Orengo CA Protein Eng; 2000 Mar; 13(3):153-65. PubMed ID: 10775657 [TBL] [Abstract][Full Text] [Related]
16. Regions of minimal structural variation among members of protein domain superfamilies: application to remote homology detection and modelling using distant relationships. Chakrabarti S; Sowdhamini R FEBS Lett; 2004 Jul; 569(1-3):31-6. PubMed ID: 15225604 [TBL] [Abstract][Full Text] [Related]
17. Improved pairwise alignments of proteins in the Twilight Zone using local structure predictions. Huang YM; Bystroff C Bioinformatics; 2006 Feb; 22(4):413-22. PubMed ID: 16352653 [TBL] [Abstract][Full Text] [Related]
18. An iterative structure-assisted approach to sequence alignment and comparative modeling. Burke DF; Deane CM; Nagarajaram HA; Campillo N; Martin-Martinez M; Mendes J; Molina F; Perry J; Reddy BV; Soares CM; Steward RE; Williams M; Carrondo MA; Blundell TL; Mizuguchi K Proteins; 1999; Suppl 3():55-60. PubMed ID: 10526352 [TBL] [Abstract][Full Text] [Related]
19. How a spatial arrangement of secondary structure elements is dispersed in the universe of protein folds. Minami S; Sawada K; Chikenji G PLoS One; 2014; 9(9):e107959. PubMed ID: 25243952 [TBL] [Abstract][Full Text] [Related]
20. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies. May AC Protein Sci; 2002 Dec; 11(12):2825-35. PubMed ID: 12441381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]