BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11159401)

  • 1. Orientation and effects of mastoparan X on phospholipid bicelles.
    Whiles JA; Brasseur R; Glover KJ; Melacini G; Komives EA; Vold RR
    Biophys J; 2001 Jan; 80(1):280-93. PubMed ID: 11159401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides.
    Vold RR; Prosser RS; Deese AJ
    J Biomol NMR; 1997 Apr; 9(3):329-35. PubMed ID: 9229505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between mastoparan B and the membrane studied by 1H NMR spectroscopy.
    Yu K; Kang S; Kim SD; Ryu PD; Kim Y
    J Biomol Struct Dyn; 2001 Feb; 18(4):595-606. PubMed ID: 11245254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15N-NMR spectroscopy in oriented lipid bilayers.
    Hori Y; Demura M; Iwadate M; Ulrich AS; Niidome T; Aoyagi H; Asakura T
    Eur J Biochem; 2001 Jan; 268(2):302-9. PubMed ID: 11168364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR.
    Lindberg M; Jarvet J; Langel U; Gräslund A
    Biochemistry; 2001 Mar; 40(10):3141-9. PubMed ID: 11258929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic phospholipid bicelles: a versatile model membrane system.
    Struppe J; Whiles JA; Vold RR
    Biophys J; 2000 Jan; 78(1):281-9. PubMed ID: 10620292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy.
    Leite NB; da Costa LC; Dos Santos Alvares D; Dos Santos Cabrera MP; de Souza BM; Palma MS; Ruggiero Neto J
    Amino Acids; 2011 Jan; 40(1):91-100. PubMed ID: 20195659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles.
    Park SH; De Angelis AA; Nevzorov AA; Wu CH; Opella SJ
    Biophys J; 2006 Oct; 91(8):3032-42. PubMed ID: 16861273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles.
    Cabrera MP; Alvares DS; Leite NB; de Souza BM; Palma MS; Riske KA; Neto JR
    Langmuir; 2011 Sep; 27(17):10805-13. PubMed ID: 21797216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of transportan in bicelles is surface charge dependent.
    Bárány-Wallje E; Andersson A; Gräslund A; Mäler L
    J Biomol NMR; 2006 Jun; 35(2):137-47. PubMed ID: 16705358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy.
    Marassi FM; Opella SJ; Juvvadi P; Merrifield RB
    Biophys J; 1999 Dec; 77(6):3152-5. PubMed ID: 10585936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analysis of a 12-residue analogue of mastoparan and of mastoparan X.
    Faerman CH; Ripoll DR
    Proteins; 1992 Feb; 12(2):111-6. PubMed ID: 1603800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MP-V1 from the Venom of Social Wasp Vespula vulgaris Is a de Novo Type of Mastoparan that Displays Superior Antimicrobial Activities.
    Kim Y; Son M; Noh EY; Kim S; Kim C; Yeo JH; Park C; Lee KW; Bang WY
    Molecules; 2016 Apr; 21(4):512. PubMed ID: 27104500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of mastoparan X derivative having fluorescence probe in lipid bilayer membrane.
    Fujita K; Kimura S; Imanishi Y
    Biochim Biophys Acta; 1994 Oct; 1195(1):157-63. PubMed ID: 7918558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective acylation enhances membrane charge sensitivity of the antimicrobial peptide mastoparan-x.
    Etzerodt T; Henriksen JR; Rasmussen P; Clausen MH; Andresen TL
    Biophys J; 2011 Jan; 100(2):399-409. PubMed ID: 21244836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific hydration status of an amphipathic peptide in AOT reverse micelles.
    Mukherjee S; Chowdhury P; DeGrado WF; Gai F
    Langmuir; 2007 Oct; 23(22):11174-9. PubMed ID: 17910485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles.
    Leite NB; Dos Santos Alvares D; de Souza BM; Palma MS; Ruggiero Neto J
    Eur Biophys J; 2014 May; 43(4-5):121-30. PubMed ID: 24595375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.