These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 11159431)
1. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431 [TBL] [Abstract][Full Text] [Related]
2. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. Diderich JA; Teusink B; Valkier J; Anjos J; Spencer-Martins I; van Dam K; Walsh MC Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3447-3454. PubMed ID: 10627042 [TBL] [Abstract][Full Text] [Related]
3. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Elbing K; Larsson C; Bill RM; Albers E; Snoep JL; Boles E; Hohmann S; Gustafsson L Appl Environ Microbiol; 2004 Sep; 70(9):5323-30. PubMed ID: 15345416 [TBL] [Abstract][Full Text] [Related]
4. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae. Nevado J; Navarro MA; Heredia CF Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600 [TBL] [Abstract][Full Text] [Related]
5. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Pritchard L; Kell DB Eur J Biochem; 2002 Aug; 269(16):3894-904. PubMed ID: 12180966 [TBL] [Abstract][Full Text] [Related]
6. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae. Heredia CF Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297 [TBL] [Abstract][Full Text] [Related]
8. Transport of hexoses in yeast. Re-examination of the sugar phosphorylation hypothesis with a new experimental approach. Nevado J; Navarro MA; Heredia CF Yeast; 1994 Jan; 10(1):59-65. PubMed ID: 8203152 [TBL] [Abstract][Full Text] [Related]
9. From steady-state to synchronized yeast glycolytic oscillations II: model validation. du Preez FB; van Niekerk DD; Snoep JL FEBS J; 2012 Aug; 279(16):2823-36. PubMed ID: 22686585 [TBL] [Abstract][Full Text] [Related]
10. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Bakker BM; Walsh MC; ter Kuile BH; Mensonides FI; Michels PA; Opperdoes FR; Westerhoff HV Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10098-103. PubMed ID: 10468568 [TBL] [Abstract][Full Text] [Related]
11. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Serrano R; Delafuente G Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087 [No Abstract] [Full Text] [Related]
12. Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts. Das J; Busse HG Biophys J; 1991 Aug; 60(2):369-79. PubMed ID: 1832975 [TBL] [Abstract][Full Text] [Related]
13. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae. Zhang J; Sassen T; ten Pierick A; Ras C; Heijnen JJ; Wahl SA Biotechnol Bioeng; 2015 May; 112(5):1033-46. PubMed ID: 25502731 [TBL] [Abstract][Full Text] [Related]
14. Carbohydrate transport in Moniliformis dubius (Acanthocephala). I. The kinetics and specificity of hexose absorption. Starling JA; Fisher FM J Parasitol; 1975 Dec; 61(6):977-90. PubMed ID: 1195077 [TBL] [Abstract][Full Text] [Related]
15. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures. Tai SL; Daran-Lapujade P; Luttik MA; Walsh MC; Diderich JA; Krijger GC; van Gulik WM; Pronk JT; Daran JM J Biol Chem; 2007 Apr; 282(14):10243-51. PubMed ID: 17251183 [TBL] [Abstract][Full Text] [Related]
16. Conservation of glycolytic oscillations in Saccharomyces cerevisiae and human pancreatic beta-cells: a study of metabolic robustness. Silva AS; Yunes JA Genet Mol Res; 2006 Aug; 5(3):525-35. PubMed ID: 17117368 [TBL] [Abstract][Full Text] [Related]
17. [Characteristics of the stoichiometric regulation of glycolysis in prokaryotic cells. A model]. Ivanitskaia IuG; Sel'kov EE Biofizika; 1985; 30(6):1016-21. PubMed ID: 4074758 [TBL] [Abstract][Full Text] [Related]
18. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Weusthuis RA; Adams H; Scheffers WA; van Dijken JP Appl Environ Microbiol; 1993 Sep; 59(9):3102-9. PubMed ID: 8215379 [TBL] [Abstract][Full Text] [Related]
19. Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-1 cells at restrictive temperature correlates with a decrease in glucose transport. Oehlen LJ; Scholte ME; de Koning W; van Dam K Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1891-8. PubMed ID: 7921242 [TBL] [Abstract][Full Text] [Related]
20. Metabolic imbalance in a Saccharomyces cerevisiae mutant unable to grow on fermentable hexoses. Alonso A; Pascual C; Herrera L; Gancedo JM; Gancedo C Eur J Biochem; 1984 Jan; 138(2):407-11. PubMed ID: 6365545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]