These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11159433)

  • 1. Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Bechor D; Ben-Tal N
    Biophys J; 2001 Feb; 80(2):643-55. PubMed ID: 11159433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus.
    Victor BL; Baptista AM; Soares CM
    J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of fusion peptide-membrane interactions.
    Li Y; Han X; Tamm LK
    Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.
    Kessel A; Cafiso DS; Ben-Tal N
    Biophys J; 2000 Feb; 78(2):571-83. PubMed ID: 10653772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of an ion channel in lipid bilayers: implicit solvent model calculations with gramicidin.
    Bransburg-Zabary S; Kessel A; Gutman M; Ben-Tal N
    Biochemistry; 2002 Jun; 41(22):6946-54. PubMed ID: 12033927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes.
    Sammalkorpi M; Lazaridis T
    Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
    Li J; Das P; Zhou R
    J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies on membrane-embedded influenza hemagglutinin and its fragments.
    Gray C; Tamm LK
    Protein Sci; 1997 Sep; 6(9):1993-2006. PubMed ID: 9300499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin.
    Tatulian SA; Tamm LK
    Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2448-59. PubMed ID: 10233062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations predict a tilted orientation for the helical region of dynorphin A(1-17) in dimyristoylphosphatidylcholine bilayers.
    Sankararamakrishnan R; Weinstein H
    Biophys J; 2000 Nov; 79(5):2331-44. PubMed ID: 11053113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers.
    Han X; Tamm LK
    J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.