BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 11160379)

  • 21. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain.
    Cooper EC; Harrington E; Jan YN; Jan LY
    J Neurosci; 2001 Dec; 21(24):9529-40. PubMed ID: 11739564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
    Maljevic S; Lerche C; Seebohm G; Alekov AK; Busch AE; Lerche H
    J Physiol; 2003 Apr; 548(Pt 2):353-60. PubMed ID: 12640002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
    Schwake M; Jentsch TJ; Friedrich T
    EMBO Rep; 2003 Jan; 4(1):76-81. PubMed ID: 12524525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels.
    Castaldo P; del Giudice EM; Coppola G; Pascotto A; Annunziato L; Taglialatela M
    J Neurosci; 2002 Jan; 22(2):RC199. PubMed ID: 11784811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels.
    Wen H; Levitan IB
    J Neurosci; 2002 Sep; 22(18):7991-8001. PubMed ID: 12223552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative splicing of KCNQ2 potassium channel transcripts contributes to the functional diversity of M-currents.
    Pan Z; Selyanko AA; Hadley JK; Brown DA; Dixon JE; McKinnon D
    J Physiol; 2001 Mar; 531(Pt 2):347-58. PubMed ID: 11230508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.
    Schroeder BC; Kubisch C; Stein V; Jentsch TJ
    Nature; 1998 Dec; 396(6712):687-90. PubMed ID: 9872318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents.
    Zhang H; Craciun LC; Mirshahi T; Rohács T; Lopes CM; Jin T; Logothetis DE
    Neuron; 2003 Mar; 37(6):963-75. PubMed ID: 12670425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation.
    Etxeberria A; Santana-Castro I; Regalado MP; Aivar P; Villarroel A
    J Neurosci; 2004 Oct; 24(41):9146-52. PubMed ID: 15483133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals.
    Martire M; Castaldo P; D'Amico M; Preziosi P; Annunziato L; Taglialatela M
    J Neurosci; 2004 Jan; 24(3):592-7. PubMed ID: 14736843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels.
    Yus-Najera E; Santana-Castro I; Villarroel A
    J Biol Chem; 2002 Aug; 277(32):28545-53. PubMed ID: 12032157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator.
    Wickenden AD; Krajewski JL; London B; Wagoner PK; Wilson WA; Clark S; Roeloffs R; McNaughton-Smith G; Rigdon GC
    Mol Pharmacol; 2008 Mar; 73(3):977-86. PubMed ID: 18089837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
    Prole DL; Lima PA; Marrion NV
    J Gen Physiol; 2003 Dec; 122(6):775-93. PubMed ID: 14638935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity.
    Lerche C; Scherer CR; Seebohm G; Derst C; Wei AD; Busch AE; Steinmeyer K
    J Biol Chem; 2000 Jul; 275(29):22395-400. PubMed ID: 10787416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Amyloid Precursor Protein C99 Fragment Modulates Voltage-Gated Potassium Channels.
    Manville RW; Abbott GW
    Cell Physiol Biochem; 2021 Jul; 55(S3):157-170. PubMed ID: 34318654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine.
    Main MJ; Cryan JE; Dupere JR; Cox B; Clare JJ; Burbidge SA
    Mol Pharmacol; 2000 Aug; 58(2):253-62. PubMed ID: 10908292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2.
    Ekberg J; Schuetz F; Boase NA; Conroy SJ; Manning J; Kumar S; Poronnik P; Adams DJ
    J Biol Chem; 2007 Apr; 282(16):12135-42. PubMed ID: 17322297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic permeation and conduction properties of neuronal KCNQ2/KCNQ3 potassium channels.
    Prole DL; Marrion NV
    Biophys J; 2004 Mar; 86(3):1454-69. PubMed ID: 14990473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation.
    Yus-Nájera E; Muñoz A; Salvador N; Jensen BS; Rasmussen HB; Defelipe J; Villarroel A
    Neuroscience; 2003; 120(2):353-64. PubMed ID: 12890507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier.
    Schwarz JR; Glassmeier G; Cooper EC; Kao TC; Nodera H; Tabuena D; Kaji R; Bostock H
    J Physiol; 2006 May; 573(Pt 1):17-34. PubMed ID: 16527853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.