BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 11160420)

  • 1. Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor.
    Choi Y; Chen HV; Lipton SA
    J Neurosci; 2001 Jan; 21(2):392-400. PubMed ID: 11160420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor.
    Sullivan JM; Traynelis SF; Chen HS; Escobar W; Heinemann SF; Lipton SA
    Neuron; 1994 Oct; 13(4):929-36. PubMed ID: 7524561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical role of the N-methyl-D-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors.
    Brimecombe JC; Potthoff WK; Aizenman E
    J Pharmacol Exp Ther; 1999 Nov; 291(2):785-92. PubMed ID: 10525101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-affinity Zn block in recombinant N-methyl-D-aspartate receptors with cysteine substitutions at the Q/R/N site.
    Amar M; Perin-Dureau F; Neyton J
    Biophys J; 2001 Jul; 81(1):107-16. PubMed ID: 11423399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor.
    Choi YB; Lipton SA
    Neuron; 1999 May; 23(1):171-80. PubMed ID: 10402203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine modulates ethanol inhibition of heteromeric N-methyl-D-aspartate receptors expressed in Xenopus oocytes.
    Buller AL; Larson HC; Morrisett RA; Monaghan DT
    Mol Pharmacol; 1995 Oct; 48(4):717-23. PubMed ID: 7476899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits.
    Chandra T; Maier W; König HG; Hirzel K; Kögel D; Schüler T; Chandra A; Demirhan I; Laube B
    Neuroscience; 2005; 134(1):145-53. PubMed ID: 15964699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSD-95 eliminates Src-induced potentiation of NR1/NR2A-subtype NMDA receptor channels and reduces high-affinity zinc inhibition.
    Yamada Y; Iwamoto T; Watanabe Y; Sobue K; Inui M
    J Neurochem; 2002 May; 81(4):758-64. PubMed ID: 12065635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation.
    Choi YB; Tenneti L; Le DA; Ortiz J; Bai G; Chen HS; Lipton SA
    Nat Neurosci; 2000 Jan; 3(1):15-21. PubMed ID: 10607390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating dual effects of zinc at recombinant N-methyl-D-aspartate receptors.
    Williams K
    Neurosci Lett; 1996 Aug; 215(1):9-12. PubMed ID: 8880741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors.
    Low CM; Zheng F; Lyuboslavsky P; Traynelis SF
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):11062-7. PubMed ID: 10984504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox modulation of recombinant human GABA(A) receptors.
    Pan ZH; Zhang X; Lipton SA
    Neuroscience; 2000; 98(2):333-8. PubMed ID: 10854765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors.
    Yuan H; Vance KM; Junge CE; Geballe MT; Snyder JP; Hepler JR; Yepes M; Low CM; Traynelis SF
    J Biol Chem; 2009 May; 284(19):12862-73. PubMed ID: 19240037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors.
    Zheng X; Zhang L; Durand GM; Bennett MV; Zukin RS
    Neuron; 1994 Apr; 12(4):811-8. PubMed ID: 8161453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling.
    Chen PE; Geballe MT; Stansfeld PJ; Johnston AR; Yuan H; Jacob AL; Snyder JP; Traynelis SF; Wyllie DJ
    Mol Pharmacol; 2005 May; 67(5):1470-84. PubMed ID: 15703381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of inhibitory glycine receptors in cultured embryonic mouse hippocampal neurons by zinc, thiol containing redox agents and carnosine.
    Thio LL; Zhang HX
    Neuroscience; 2006; 139(4):1315-27. PubMed ID: 16515845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol sensitivity of heteromeric NMDA receptors: effects of subunit assembly, glycine and NMDAR1 Mg(2+)-insensitive mutants.
    Mirshahi T; Woodward JJ
    Neuropharmacology; 1995 Mar; 34(3):347-55. PubMed ID: 7630488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition.
    Chen N; Moshaver A; Raymond LA
    Mol Pharmacol; 1997 Jun; 51(6):1015-23. PubMed ID: 9187268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor channels: subunit-specific potentiation by reducing agents.
    Köhr G; Eckardt S; Lüddens H; Monyer H; Seeburg PH
    Neuron; 1994 May; 12(5):1031-40. PubMed ID: 7514425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of interaction between nitric oxide and the redox modulatory site of the NMDA receptor.
    Aizenman E; Potthoff WK
    Br J Pharmacol; 1999 Jan; 126(1):296-300. PubMed ID: 10051148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.