BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11160893)

  • 1. Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable.
    O'Connor M; Lee WM; Mankad A; Squires CL; Dahlberg AE
    Nucleic Acids Res; 2001 Feb; 29(3):710-5. PubMed ID: 11160893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interactions within 23S rRNA involving the peptidyltransferase center.
    Douthwaite S
    J Bacteriol; 1992 Feb; 174(4):1333-8. PubMed ID: 1531223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome.
    Burakovsky DE; Sergiev PV; Steblyanko MA; Konevega AL; Bogdanov AA; Dontsova OA
    FEBS Lett; 2011 Oct; 585(19):3073-8. PubMed ID: 21875584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action.
    Xiong L; Kloss P; Douthwaite S; Andersen NM; Swaney S; Shinabarger DL; Mankin AS
    J Bacteriol; 2000 Oct; 182(19):5325-31. PubMed ID: 10986233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cyanobacterial strain with all chromosomal rRNA operons inactivated: a single nucleotide mutation of 23S rRNA confers temperature-sensitive phenotypes.
    Monshupanee T; Fa-Aroonsawat S; Chungjatupornchai W
    Microbiology (Reading); 2006 May; 152(Pt 5):1417-1425. PubMed ID: 16622058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center.
    Saarma U; Spahn CM; Nierhaus KH; Remme J
    RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli.
    Aagaard C; Rosendahl G; Dam M; Powers T; Douthwaite S
    Biochimie; 1991 Dec; 73(12):1439-44. PubMed ID: 1725257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
    Samaha RR; Green R; Noller HF
    Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis of the modified bases, m(5)U1939 and psi2504, in Escherichia coli 23S rRNA.
    Persaud C; Lu Y; Vila-Sanjurjo A; Campbell JL; Finley J; O'Connor M
    Biochem Biophys Res Commun; 2010 Feb; 392(2):223-7. PubMed ID: 20067766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "DEAD box" protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA.
    Nicol SM; Fuller-Pace FV
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11681-5. PubMed ID: 8524828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre.
    Xiong L; Shah S; Mauvais P; Mankin AS
    Mol Microbiol; 1999 Jan; 31(2):633-9. PubMed ID: 10027979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA.
    Green R; Noller HF
    Biochemistry; 1999 Feb; 38(6):1772-9. PubMed ID: 10026257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit.
    Thompson J; Kim DF; O'Connor M; Lieberman KR; Bayfield MA; Gregory ST; Green R; Noller HF; Dahlberg AE
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9002-7. PubMed ID: 11470897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-pairing between 23S rRNA and tRNA in the ribosomal A site.
    Kim DF; Green R
    Mol Cell; 1999 Nov; 4(5):859-64. PubMed ID: 10619032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    Eur J Biochem; 1994 Nov; 226(1):141-7. PubMed ID: 7957241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors.
    Toh SM; Mankin AS
    J Mol Biol; 2008 Jul; 380(4):593-7. PubMed ID: 18554609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UGA suppression by a mutant RNA of the large ribosomal subunit.
    Jemiolo DK; Pagel FT; Murgola EJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12309-13. PubMed ID: 8618891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Escherichia coli 23S rRNAs containing processed and unprocessed intervening sequences from Salmonella typhimurium.
    Gregory ST; O'Connor M; Dahlberg AE
    Nucleic Acids Res; 1996 Dec; 24(24):4918-23. PubMed ID: 9016661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.