These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 11160931)

  • 21. Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
    Burke B; An S; Musier-Forsyth K
    Biochim Biophys Acta; 2008 Sep; 1784(9):1222-5. PubMed ID: 18513497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient aminoacylation of the tRNA(Ala) acceptor stem: dependence on the 2:71 base pair.
    Beuning PJ; Nagan MC; Cramer CJ; Musier-Forsyth K; Gelpí JL; Bashford D
    RNA; 2002 May; 8(5):659-70. PubMed ID: 12022232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation.
    Kim S; Landro JA; Gale AJ; Schimmel P
    Biochemistry; 1993 Dec; 32(48):13026-31. PubMed ID: 8241156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A strategy of tRNA recognition that includes determinants of RNA structure.
    Hamann CS; Hou YM
    Bioorg Med Chem; 1997 Jun; 5(6):1011-9. PubMed ID: 9222494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains.
    Chihade JW; Schimmel P
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12316-21. PubMed ID: 10535919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recognition of functional groups in an RNA helix by a class I tRNA synthetase.
    Hou YM; Sundaram M; Zhang X; Holland JA; Davis DR
    RNA; 2000 Jul; 6(7):922-7. PubMed ID: 10917589
    [No Abstract]   [Full Text] [Related]  

  • 28. Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis.
    Gale AJ; Shi JP; Schimmel P
    Biochemistry; 1996 Jan; 35(2):608-15. PubMed ID: 8555234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D
    Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aminoacylation of an unusual tRNA(Cys) from an extreme halophile.
    Evilia C; Ming X; DasSarma S; Hou YM
    RNA; 2003 Jul; 9(7):794-801. PubMed ID: 12810913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
    Liu M; Chu WC; Liu JC; Horowitz J
    Nucleic Acids Res; 1997 Dec; 25(24):4883-90. PubMed ID: 9396792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tertiary core rearrangements in a tight binding transfer RNA aptamer.
    Bullock TL; Sherlin LD; Perona JJ
    Nat Struct Biol; 2000 Jun; 7(6):497-504. PubMed ID: 10881199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing.
    Du X; Wang ED
    Nucleic Acids Res; 2003 Jun; 31(11):2865-72. PubMed ID: 12771213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase.
    Lipman RS; Hou YM
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13495-500. PubMed ID: 9811828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase.
    Ohannesian DW; Oh J; Hou YM
    Biochemistry; 1996 Nov; 35(45):14405-12. PubMed ID: 8916927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain-domain communication in aminoacyl-tRNA synthetases.
    Alexander RW; Schimmel P
    Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro.
    Liu H; Peterson R; Kessler J; Musier-Forsyth K
    Nucleic Acids Res; 1995 Jan; 23(1):165-9. PubMed ID: 7870582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix(Ala) variants.
    Nagan MC; Beuning P; Musier-Forsyth K; Cramer CJ
    Nucleic Acids Res; 2000 Jul; 28(13):2527-34. PubMed ID: 10871402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.