These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 11161064)
1. Subcellular compartmentation of the diterpene carnosic acid and its derivatives in the leaves of rosemary. Munné-Bosch S; Alegre L Plant Physiol; 2001 Feb; 125(2):1094-102. PubMed ID: 11161064 [TBL] [Abstract][Full Text] [Related]
2. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. Wellwood CR; Cole RA J Agric Food Chem; 2004 Oct; 52(20):6101-7. PubMed ID: 15453673 [TBL] [Abstract][Full Text] [Related]
3. Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Munné-Bosch S; Alegre L Plant Physiol; 2003 Apr; 131(4):1816-25. PubMed ID: 12692341 [TBL] [Abstract][Full Text] [Related]
4. The key phytochemistry of rosemary (Salvia rosmarinus) contributing to hair protection against UV. Marsh JM; Whitaker S; Li L; Fang R; Simmonds MSJ; Vagkidis N; Chechik V Int J Cosmet Sci; 2023 Dec; 45(6):749-760. PubMed ID: 37461190 [TBL] [Abstract][Full Text] [Related]
5. Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant. Masuda T; Inaba Y; Maekawa T; Takeda Y; Tamura H; Yamaguchi H J Agric Food Chem; 2002 Oct; 50(21):5863-9. PubMed ID: 12358451 [TBL] [Abstract][Full Text] [Related]
6. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Loussouarn M; Krieger-Liszkay A; Svilar L; Bily A; Birtić S; Havaux M Plant Physiol; 2017 Nov; 175(3):1381-1394. PubMed ID: 28916593 [TBL] [Abstract][Full Text] [Related]
7. Rapid quantitative enrichment of carnosic acid from rosemary (Rosmarinus officinalis L.) by isoelectric focused adsorptive bubble chromatography. Backleh M; Leupold G; Parlar H J Agric Food Chem; 2003 Feb; 51(5):1297-301. PubMed ID: 12590472 [TBL] [Abstract][Full Text] [Related]
8. Importance of extract standardization and in vitro/ex vivo assay selection for the evaluation of antioxidant activity of botanicals: a case study on three Rosmarinus officinalis L. extracts. Ibarra A; Cases J; Bily A; He K; Bai N; Roller M; Coussaert A; Ripoll C J Med Food; 2010 Oct; 13(5):1167-75. PubMed ID: 20626255 [TBL] [Abstract][Full Text] [Related]
9. Isolation of carnosic acid from rosemary extracts using semi-preparative supercritical fluid chromatography. Vicente G; García-Risco MR; Fornari T; Reglero G J Chromatogr A; 2013 Apr; 1286():208-15. PubMed ID: 23497854 [TBL] [Abstract][Full Text] [Related]
10. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. del Baño MJ; Lorente J; Castillo J; Benavente-García O; del Río JA; Ortuño A; Quirin KW; Gerard D J Agric Food Chem; 2003 Jul; 51(15):4247-53. PubMed ID: 12848492 [TBL] [Abstract][Full Text] [Related]
11. Antiangiogenic effect of carnosic acid and carnosol, neuroprotective compounds in rosemary leaves. Kayashima T; Matsubara K Biosci Biotechnol Biochem; 2012; 76(1):115-9. PubMed ID: 22232247 [TBL] [Abstract][Full Text] [Related]
12. Relevance of phenolic diterpene constituents to antioxidant activity of supercritical CO(2) extract from the leaves of rosemary. Chang CH; Chyau CC; Hsieh CL; Wu YY; Ker YB; Tsen HY; Peng RY Nat Prod Res; 2008 Jan; 22(1):76-90. PubMed ID: 17999341 [TBL] [Abstract][Full Text] [Related]
13. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. Jordán MJ; Lax V; Rota MC; Lorán S; Sotomayor JA J Agric Food Chem; 2012 Sep; 60(38):9603-8. PubMed ID: 22957812 [TBL] [Abstract][Full Text] [Related]
14. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Almela L; Sánchez-Muñoz B; Fernández-López JA; Roca MJ; Rabe V J Chromatogr A; 2006 Jul; 1120(1-2):221-9. PubMed ID: 16563403 [TBL] [Abstract][Full Text] [Related]
16. Involvement of Carnosic Acid in the Phytotoxicity of Appiah KS; Mardani HK; Omari RA; Eziah VY; Ofosu-Anim J; Onwona-Agyeman S; Amoatey CA; Kawada K; Katsura K; Oikawa Y; Fujii Y Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30486296 [TBL] [Abstract][Full Text] [Related]
17. Extraction Optimization and Qualitative/Quantitative Determination of Bioactive Abietane-Type Diterpenes from Three Kallimanis P; Magiatis P; Panagiotopoulou A; Ioannidis K; Chinou I Molecules; 2024 Jan; 29(3):. PubMed ID: 38338370 [TBL] [Abstract][Full Text] [Related]
18. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Pérez-Fons L; Garzón MT; Micol V J Agric Food Chem; 2010 Jan; 58(1):161-71. PubMed ID: 19924866 [TBL] [Abstract][Full Text] [Related]
19. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. López-Jiménez A; García-Caballero M; Medina MÁ; Quesada AR Eur J Nutr; 2013 Feb; 52(1):85-95. PubMed ID: 22173778 [TBL] [Abstract][Full Text] [Related]
20. Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.). Hadi Soltanabad M; Bagherieh-Najjar MB; Mianabadi M Appl Biochem Biotechnol; 2020 Jun; 191(2):482-495. PubMed ID: 31797151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]