BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11161559)

  • 1. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry.
    Coffman JA; Davidson EH
    Dev Biol; 2001 Feb; 230(1):18-28. PubMed ID: 11161559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.
    Satoh K; Kominami T
    Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
    Bradham CA; McClay DR
    Development; 2006 Jan; 133(1):21-32. PubMed ID: 16319119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.
    Cavalieri V; Di Bernardo M; Anello L; Spinelli G
    Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements.
    Yuh CH; Li X; Davidson EH; Klein WH
    Dev Biol; 2001 Apr; 232(2):424-38. PubMed ID: 11401403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria, redox signaling and axis specification in metazoan embryos.
    Coffman JA; Denegre JM
    Dev Biol; 2007 Aug; 308(2):266-80. PubMed ID: 17586486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting expression patterns of Wnt pathway components in sea urchin embryos.
    Bince JM; Peng CF; Wikramanayake AH
    Methods Mol Biol; 2008; 469():201-11. PubMed ID: 19109712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
    Agca C; Klein WH; Venuti JM
    Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental utilization of SpP3A1 and SpP3A2: two proteins which recognize the same DNA target site in several sea urchin gene regulatory regions.
    Zeller RW; Britten RJ; Davidson EH
    Dev Biol; 1995 Jul; 170(1):75-82. PubMed ID: 7601316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.