These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11161566)

  • 21. Interaction of Smads with collagen types I, III, and V.
    Ellis LR; Warner DR; Greene RM; Pisano MM
    Biochem Biophys Res Commun; 2003 Oct; 310(4):1117-23. PubMed ID: 14559231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal transduction of the TGF-beta superfamily by Smad proteins.
    Kawabata M; Miyazono K
    J Biochem; 1999 Jan; 125(1):9-16. PubMed ID: 9880789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The MH1 domains of smad2 and smad3 are involved in the regulation of the ALK7 signals.
    Watanabe R; Yamada Y; Ihara Y; Someya Y; Kubota A; Kagimoto S; Kuroe A; Iwakura T; Shen ZP; Inada A; Adachi T; Ban N; Miyawaki K; Sunaga Y; Tsuda K; Seino Y
    Biochem Biophys Res Commun; 1999 Jan; 254(3):707-12. PubMed ID: 9920806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins.
    Postigo AA; Depp JL; Taylor JJ; Kroll KL
    EMBO J; 2003 May; 22(10):2453-62. PubMed ID: 12743039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional analysis of human Smad1: role of the amino-terminal domain.
    Xu RH; Lechleider RJ; Shih HM; Hao CF; Sredni D; Roberts AB; Kung Hf
    Biochem Biophys Res Commun; 1999 May; 258(2):366-73. PubMed ID: 10329393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling.
    Bai S; Cao X
    J Biol Chem; 2002 Feb; 277(6):4176-82. PubMed ID: 11711531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation.
    Xiao Z; Liu X; Henis YI; Lodish HF
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7853-8. PubMed ID: 10884415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A molecular basis for Smad specificity.
    Lagna G; Hemmati-Brivanlou A
    Dev Dyn; 1999 Mar; 214(3):269-77. PubMed ID: 10090153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of novel Smad binding proteins.
    Warner DR; Roberts EA; Greene RM; Pisano MM
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1185-90. PubMed ID: 14651998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recombinant expression and purification of smad proteins.
    Funaba M; Mathews LS
    Protein Expr Purif; 2000 Dec; 20(3):507-13. PubMed ID: 11087691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.
    Williams TM; Williams ME; Heaton JH; Gelehrter TD; Innis JW
    Nucleic Acids Res; 2005; 33(14):4475-84. PubMed ID: 16087734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway.
    Hocevar BA; Smine A; Xu XX; Howe PH
    EMBO J; 2001 Jun; 20(11):2789-801. PubMed ID: 11387212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.
    Chou WC; Prokova V; Shiraishi K; Valcourt U; Moustakas A; Hadzopoulou-Cladaras M; Zannis VI; Kardassis D
    Mol Biol Cell; 2003 Mar; 14(3):1279-94. PubMed ID: 12631740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3.
    Dennler S; Huet S; Gauthier JM
    Oncogene; 1999 Feb; 18(8):1643-8. PubMed ID: 10102636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes.
    Verschueren K; Remacle JE; Collart C; Kraft H; Baker BS; Tylzanowski P; Nelles L; Wuytens G; Su MT; Bodmer R; Smith JC; Huylebroeck D
    J Biol Chem; 1999 Jul; 274(29):20489-98. PubMed ID: 10400677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads.
    Itoh F; Asao H; Sugamura K; Heldin CH; ten Dijke P; Itoh S
    EMBO J; 2001 Aug; 20(15):4132-42. PubMed ID: 11483516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements.
    Howell M; Inman GJ; Hill CS
    Development; 2002 Jun; 129(12):2823-34. PubMed ID: 12050132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smad-Runx interactions during chondrocyte maturation.
    Leboy P; Grasso-Knight G; D'Angelo M; Volk SW; Lian JV; Drissi H; Stein GS; Adams SL
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 1):S15-22. PubMed ID: 11263661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling.
    Yamamoto TS; Takagi C; Hyodo AC; Ueno N
    Development; 2001 Jul; 128(14):2769-79. PubMed ID: 11526082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.