BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11161674)

  • 1. A study of metal distribution from lignite fuels using trees as biological monitors.
    Sawidis T; Chettri MK; Papaioannou A; Zachariadis G; Stratis J
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):27-35. PubMed ID: 11161674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant.
    Cicek A; Koparal AS
    Chemosphere; 2004 Nov; 57(8):1031-6. PubMed ID: 15488593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators.
    Sawidis T; Krystallidis P; Veros D; Chettri M
    Biol Trace Elem Res; 2012 Sep; 148(3):396-408. PubMed ID: 22410948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany.
    Ehrman JM; Bärlocher F; Wennrich R; Krauss GJ; Krauss G
    Sci Total Environ; 2008 Jan; 389(2-3):486-96. PubMed ID: 17928036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E; Fernández Marcos ML; Vaamonde C; Fernández-Sanjurjo MJ
    Sci Total Environ; 2003 Sep; 313(1-3):185-97. PubMed ID: 12922070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of trace elements in dairy milk collected from the environment of coal-fired power plant.
    Ramamurthy N; Thillaivelavan K
    J Environ Sci Eng; 2005 Jan; 47(1):53-8. PubMed ID: 16669336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study.
    Domínguez MT; Marañón T; Murillo JM; Schulin R; Robinson BH
    Environ Pollut; 2008 Mar; 152(1):50-9. PubMed ID: 17602809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L.
    Celik A; Kartal AA; Akdoğan A; Kaska Y
    Environ Int; 2005 Jan; 31(1):105-12. PubMed ID: 15607784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).
    Rana V; Maiti SK
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments.
    Vandecasteele B; Laing GD; Quataert P; Tack FM
    Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal bioaccumulation in plant leaves from an industrious area and the botanical garden in Beijing.
    Liu YJ; Ding H; Zhu YG
    J Environ Sci (China); 2005; 17(2):294-300. PubMed ID: 16295909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses.
    Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T
    Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal concentrations in plants and soils at roadside locations and parks of urban Guangzhou.
    Guan DS; Peart MR
    J Environ Sci (China); 2006; 18(3):495-502. PubMed ID: 17294646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaves of orange jasmine (Murraya paniculata) as indicators of airborne heavy metal in Bangkok, Thailand.
    Titseesang T; Wood T; Panich N
    Ann N Y Acad Sci; 2008 Oct; 1140():282-9. PubMed ID: 18991926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.