BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 11161712)

  • 1. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles.
    Dye BT; Patton JG
    Exp Cell Res; 2001 Feb; 263(1):131-44. PubMed ID: 11161712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A distinct bipartite motif is required for the localization of inhibitory kappaB-like (IkappaBL) protein to nuclear speckles.
    Semple JI; Brown SE; Sanderson CM; Campbell RD
    Biochem J; 2002 Feb; 361(Pt 3):489-96. PubMed ID: 11802778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lark is the splicing factor RBM4 and exhibits unique subnuclear localization properties.
    Markus MA; Morris BJ
    DNA Cell Biol; 2006 Aug; 25(8):457-64. PubMed ID: 16907643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles.
    Leung AK; Lamond AI
    J Cell Biol; 2002 May; 157(4):615-29. PubMed ID: 12011111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential nuclear localization and nuclear matrix association of the splicing factors PSF and PTB.
    Meissner M; Dechat T; Gerner C; Grimm R; Foisner R; Sauermann G
    J Cell Biochem; 2000 Jan; 76(4):559-66. PubMed ID: 10653975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear relocalization of the pre-mRNA splicing factor PSF during apoptosis involves hyperphosphorylation, masking of antigenic epitopes, and changes in protein interactions.
    Shav-Tal Y; Cohen M; Lapter S; Dye B; Patton JG; Vandekerckhove J; Zipori D
    Mol Biol Cell; 2001 Aug; 12(8):2328-40. PubMed ID: 11514619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cyclin L1 as an immobile component of the splicing factor compartment.
    Herrmann A; Fleischer K; Czajkowska H; Müller-Newen G; Becker W
    FASEB J; 2007 Oct; 21(12):3142-52. PubMed ID: 17494991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity.
    Cáceres JF; Misteli T; Screaton GR; Spector DL; Krainer AR
    J Cell Biol; 1997 Jul; 138(2):225-38. PubMed ID: 9230067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein.
    Sleeman J; Lyon CE; Platani M; Kreivi JP; Lamond AI
    Exp Cell Res; 1998 Sep; 243(2):290-304. PubMed ID: 9743589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) two-fusion fluorescence resonance energy transfer (FRET).
    Li HY; Ng EK; Lee SM; Kotaka M; Tsui SK; Lee CY; Fung KP; Waye MM
    J Cell Biochem; 2001; 80(3):293-303. PubMed ID: 11135358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of PSF, a novel pre-mRNA splicing factor.
    Patton JG; Porro EB; Galceran J; Tempst P; Nadal-Ginard B
    Genes Dev; 1993 Mar; 7(3):393-406. PubMed ID: 8449401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear targeting determinants of the far upstream element binding protein, a c-myc transcription factor.
    He L; Weber A; Levens D
    Nucleic Acids Res; 2000 Nov; 28(22):4558-65. PubMed ID: 11071946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles.
    Tripathi V; Song DY; Zong X; Shevtsov SP; Hearn S; Fu XD; Dundr M; Prasanth KV
    Mol Biol Cell; 2012 Sep; 23(18):3694-706. PubMed ID: 22855529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear trafficking of photoreceptor protein crx: the targeting sequence and pathologic implications.
    Fei Y; Hughes TE
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2849-56. PubMed ID: 10967037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Subcellular localization of basic Krüppel-like factor].
    Ma XY; Wang MJ; Qu XH; Xing GC; Zhu YP; He FC
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Mar; 35(3):255-60. PubMed ID: 12621550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain.
    Spittau B; Wang Z; Boinska D; Krieglstein K
    J Cell Biochem; 2007 Jun; 101(3):712-22. PubMed ID: 17252542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the sequence determinants mediating the nucleo-cytoplasmic shuttling of TIAR and TIA-1 RNA-binding proteins.
    Zhang T; Delestienne N; Huez G; Kruys V; Gueydan C
    J Cell Sci; 2005 Dec; 118(Pt 23):5453-63. PubMed ID: 16278295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved peptide motif in Raver2 mediates its interaction with the polypyrimidine tract-binding protein.
    Henneberg B; Swiniarski S; Sabine Becke ; Illenberger S
    Exp Cell Res; 2010 Apr; 316(6):966-79. PubMed ID: 19962980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over-expression of SR-cyclophilin, an interaction partner of nuclear pinin, releases SR family splicing factors from nuclear speckles.
    Lin CL; Leu S; Lu MC; Ouyang P
    Biochem Biophys Res Commun; 2004 Aug; 321(3):638-47. PubMed ID: 15358154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb.
    Barboric M; Kohoutek J; Price JP; Blazek D; Price DH; Peterlin BM
    EMBO J; 2005 Dec; 24(24):4291-303. PubMed ID: 16362050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.