BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 11161825)

  • 1. Characterization of the mouse phenylalanine hydroxylase mutation Pah(enu3).
    Haefele MJ; White G; McDonald JD
    Mol Genet Metab; 2001 Jan; 72(1):27-30. PubMed ID: 11161825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics analysis reveals perturbations of cerebrocortical metabolic pathways in the Pah
    Lu LH; Xia ZX; Guo JL; Xiao LL; Zhang YJ
    CNS Neurosci Ther; 2020 Apr; 26(4):486-493. PubMed ID: 31471952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of PAH gene variants and prenatal diagnosis for 43 Chinese pedigrees affected with Phenylketonuria].
    Chai Y; Ning H; Xia J; Wang Y; Kong X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2024 Jun; 41(6):702-707. PubMed ID: 38818554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carriers of autosomal recessive conditions: are they really 'unaffected?'.
    Hames A; Khan S; Gilliland C; Goldman L; Lo HW; Magda K; Keathley J
    J Med Genet; 2023 Dec; 61(1):1-7. PubMed ID: 37775265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAH deficient pathology in humanized c.1066-11G>A phenylketonuria mice.
    Martínez-Pizarro A; Picó S; López-Márquez A; Rodriguez-López C; Montalvo E; Alvarez M; Castro M; Ramón-Maiques S; Pérez B; Lucas JJ; Richard E; Desviat LR
    Hum Mol Genet; 2024 Jun; 33(12):1074-1089. PubMed ID: 38520741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient in vivo prime editing corrects the most frequent phenylketonuria variant, associated with high unmet medical need.
    Brooks DL; Whittaker MN; Qu P; Musunuru K; Ahrens-Nicklas RC; Wang X
    Am J Hum Genet; 2023 Dec; 110(12):2003-2014. PubMed ID: 37924808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral protein synthesis in a genetic mouse model of phenylketonuria.
    Smith CB; Kang J
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):11014-9. PubMed ID: 11005872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A base editing strategy using mRNA-LNPs for in vivo correction of the most frequent phenylketonuria variant.
    Brooks DL; Whittaker MN; Said H; Dwivedi G; Qu P; Musunuru K; Ahrens-Nicklas RC; Alameh MG; Wang X
    HGG Adv; 2024 Jan; 5(1):100253. PubMed ID: 37922902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-art 2023 on gene therapy for phenylketonuria.
    Martinez M; Harding CO; Schwank G; Thöny B
    J Inherit Metab Dis; 2024 Jan; 47(1):80-92. PubMed ID: 37401651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [
    Pang YH; Gao XY; Yuan ZY; Huang H; Wang ZQ; Peng L; Li YQ; Liu J; Liu D; Chen GR
    Zhongguo Dang Dai Er Ke Za Zhi; 2024 Feb; 26(2):188-193. PubMed ID: 38436318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse models of human phenylketonuria.
    Shedlovsky A; McDonald JD; Symula D; Dove WF
    Genetics; 1993 Aug; 134(4):1205-10. PubMed ID: 8375656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.
    Villiger L; Grisch-Chan HM; Lindsay H; Ringnalda F; Pogliano CB; Allegri G; Fingerhut R; Häberle J; Matos J; Robinson MD; Thöny B; Schwank G
    Nat Med; 2018 Oct; 24(10):1519-1525. PubMed ID: 30297904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequencies of the most common mutations responsible for phenylketonuria in Poland.
    Zekanowski C; Nowacka M; Zgulska M; Horst J; Cabalska B; Mazurczak T
    Mol Cell Probes; 1994 Aug; 8(4):323-4. PubMed ID: 7870074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GT to AT transition at a splice donor site causes skipping of the preceding exon in phenylketonuria.
    Marvit J; DiLella AG; Brayton K; Ledley FD; Robson KJ; Woo SL
    Nucleic Acids Res; 1987 Jul; 15(14):5613-28. PubMed ID: 3615198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenylketonuria.
    van Spronsen FJ; Blau N; Harding C; Burlina A; Longo N; Bosch AM
    Nat Rev Dis Primers; 2021 May; 7(1):36. PubMed ID: 34017006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pah-R261Q mouse reveals oxidative stress associated with amyloid-like hepatic aggregation of mutant phenylalanine hydroxylase.
    Aubi O; Prestegård KS; Jung-Kc K; Shi TS; Ying M; Grindheim AK; Scherer T; Ulvik A; McCann A; Spriet E; Thöny B; Martinez A
    Nat Commun; 2021 Apr; 12(1):2073. PubMed ID: 33824313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Pah-exon1 deleted murine model of phenylalanine hydroxylase (PAH) deficiency.
    Richards DY; Winn SR; Dudley S; Fedorov L; Rimann N; Thöny B; Harding CO
    Mol Genet Metab; 2020 Nov; 131(3):306-315. PubMed ID: 33051130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal Model Contributions to Congenital Metabolic Disease.
    Moro CA; Hanna-Rose W
    Adv Exp Med Biol; 2020; 1236():225-244. PubMed ID: 32304075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro read-through of phenylalanine hydroxylase (PAH) nonsense mutations using aminoglycosides: a potential therapy for phenylketonuria.
    Ho G; Reichardt J; Christodoulou J
    J Inherit Metab Dis; 2013 Nov; 36(6):955-9. PubMed ID: 23532445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria.
    Pey AL; Ying M; Cremades N; Velazquez-Campoy A; Scherer T; Thöny B; Sancho J; Martinez A
    J Clin Invest; 2008 Aug; 118(8):2858-67. PubMed ID: 18596920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.