These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 11162049)
1. Oscillations in plankton models with nutrient recycling. Ruan S J Theor Biol; 2001 Jan; 208(1):15-26. PubMed ID: 11162049 [TBL] [Abstract][Full Text] [Related]
2. Role of toxin and nutrient for the occurrence and termination of plankton bloom--results drawn from field observations and a mathematical model. Pal S; Chatterjee S; Chattopadhyay J Biosystems; 2007; 90(1):87-100. PubMed ID: 17194523 [TBL] [Abstract][Full Text] [Related]
3. Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay. Zhao J; Tian JP; Wei J Bull Math Biol; 2016 Mar; 78(3):381-412. PubMed ID: 26934887 [TBL] [Abstract][Full Text] [Related]
4. Stoichiometry, herbivory and competition for nutrients: simple models based on planktonic ecosystems. Grover JP J Theor Biol; 2002 Feb; 214(4):599-618. PubMed ID: 11851370 [TBL] [Abstract][Full Text] [Related]
6. Plankton-toxin interaction with a variable input nutrient. Jang SR; Baglama J; Rick J J Biol Dyn; 2008 Jan; 2(1):14-30. PubMed ID: 22876842 [TBL] [Abstract][Full Text] [Related]
7. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system--a mathematical study supported by experimental findings. Sarkar RR; Pal S; Chattopadhyay J Biosystems; 2005 Apr; 80(1):11-23. PubMed ID: 15740831 [TBL] [Abstract][Full Text] [Related]
8. Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Morozov A; Arashkevich E; Nikishina A; Solovyev K Math Med Biol; 2011 Jun; 28(2):185-215. PubMed ID: 20562472 [TBL] [Abstract][Full Text] [Related]
9. Towards resolving the paradox of enrichment: the impact of zooplankton vertical migrations on plankton systems stability. Morozov AY; Petrovskii SV; Nezlin NP J Theor Biol; 2007 Oct; 248(3):501-11. PubMed ID: 17624371 [TBL] [Abstract][Full Text] [Related]
11. The effects of the evolution of stoichiometry-related traits on population dynamics in plankton communities. Mizuno AN; Kawata M J Theor Biol; 2009 Jul; 259(2):209-18. PubMed ID: 19298828 [TBL] [Abstract][Full Text] [Related]
12. Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response--a mathematical study. Pal R; Basu D; Banerjee M Biosystems; 2009 Mar; 95(3):243-53. PubMed ID: 19056460 [TBL] [Abstract][Full Text] [Related]
13. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton. Shi RQ; Ren JN; Wang CH Math Biosci Eng; 2020 May; 17(4):3836-3868. PubMed ID: 32987557 [TBL] [Abstract][Full Text] [Related]
14. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. Morozov AY J Theor Biol; 2010 Jul; 265(1):45-54. PubMed ID: 20406647 [TBL] [Abstract][Full Text] [Related]
15. Role of gestation delay in a plankton-fish model under stochastic fluctuations. Mukhopadhyay B; Bhattacharyya R Math Biosci; 2008 Sep; 215(1):26-34. PubMed ID: 18602123 [TBL] [Abstract][Full Text] [Related]
16. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
17. Chaos and order in plankton dynamics. Complex behavior of a simple model. Medvinsky AB; Tikhonova IA; Petrovskii SV; Malchow H; Venturino E Zh Obshch Biol; 2002; 63(2):149-58. PubMed ID: 11966216 [TBL] [Abstract][Full Text] [Related]
18. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation]. Medvedinskiĭ AB; Tikhonova IA; Li BL; Malchow H Biofizika; 2003; 48(1):104-10. PubMed ID: 12630123 [TBL] [Abstract][Full Text] [Related]
19. Joint effects of nutrients and contaminants on the dynamics of a food chain in marine ecosystems. Bacelar FS; Dueri S; Hernández-García E; Zaldívar JM Math Biosci; 2009 Mar; 218(1):24-32. PubMed ID: 19135461 [TBL] [Abstract][Full Text] [Related]
20. Coupling effect of grazing pressure and nutrient enrichment on system stability. Chatterjee S Math Biosci; 2012 Jul; 238(1):1-11. PubMed ID: 22554498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]