These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1117 related articles for article (PubMed ID: 11162122)
1. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
2. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Packschies L; Theyssen H; Buchberger A; Bukau B; Goody RS; Reinstein J Biochemistry; 1997 Mar; 36(12):3417-22. PubMed ID: 9131990 [TBL] [Abstract][Full Text] [Related]
3. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system. Klostermeier D; Seidel R; Reinstein J J Mol Biol; 1999 Apr; 287(3):511-25. PubMed ID: 10092456 [TBL] [Abstract][Full Text] [Related]
4. Balance of ATPase stimulation and nucleotide exchange is not required for efficient refolding activity of the DnaK chaperone. Groemping Y; Seidel R; Reinstein J FEBS Lett; 2005 Oct; 579(25):5713-7. PubMed ID: 16225874 [TBL] [Abstract][Full Text] [Related]
5. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. Groemping Y; Reinstein J J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541 [TBL] [Abstract][Full Text] [Related]
6. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
7. Functional properties of the molecular chaperone DnaK from Thermus thermophilus. Klostermeier D; Seidel R; Reinstein J J Mol Biol; 1998 Jun; 279(4):841-53. PubMed ID: 9642065 [TBL] [Abstract][Full Text] [Related]
8. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796 [TBL] [Abstract][Full Text] [Related]
9. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374 [TBL] [Abstract][Full Text] [Related]
10. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system. Nakamura A; Takumi K; Miki K J Mol Biol; 2010 Mar; 396(4):1000-11. PubMed ID: 20036249 [TBL] [Abstract][Full Text] [Related]
12. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA; Kwiatkowska JM; Lipińska B Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982 [TBL] [Abstract][Full Text] [Related]
13. Interdomain communication in the molecular chaperone DnaK. Han W; Christen P Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055 [TBL] [Abstract][Full Text] [Related]
14. Deletion of DnaK's lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis. Chesnokova LS; Slepenkov SV; Protasevich II; Sehorn MG; Brouillette CG; Witt SN Biochemistry; 2003 Aug; 42(30):9028-40. PubMed ID: 12885236 [TBL] [Abstract][Full Text] [Related]
15. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Russell R; Wali Karzai A; Mehl AF; McMacken R Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787 [TBL] [Abstract][Full Text] [Related]
17. DafA cycles between the DnaK chaperone system and translational machinery. Dumitru GL; Groemping Y; Klostermeier D; Restle T; Deuerling E; Reinstein J J Mol Biol; 2004 Jun; 339(5):1179-89. PubMed ID: 15178257 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation. Gelinas AD; Toth J; Bethoney KA; Stafford WF; Harrison CJ J Mol Biol; 2004 May; 339(2):447-58. PubMed ID: 15136046 [TBL] [Abstract][Full Text] [Related]
19. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Diamant S; Goloubinoff P Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor. Gelinas AD; Toth J; Bethoney KA; Langsetmo K; Stafford WF; Harrison CJ Biochemistry; 2003 Aug; 42(30):9050-9. PubMed ID: 12885238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]