These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1116238)

  • 1. Calculations of pulsatile flow through a branch: implications for the hemodynamics of atherogenesis.
    Friedman MH; O'Brien V; Ehrlich LW
    Circ Res; 1975 Feb; 36(2):277-85. PubMed ID: 1116238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing blood flow patterns in the human right coronary artery.
    Myers JG; Moore JA; Ojha M; Johnston KW; Ethier CR
    Ann Biomed Eng; 2001 Feb; 29(2):109-20. PubMed ID: 11284665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation.
    Lee BK; Kwon HM; Hong BK; Park BE; Suh SH; Cho MT; Lee CS; Kim MC; Kim CJ; Yoo SS; Kim HS
    Yonsei Med J; 2001 Aug; 42(4):375-83. PubMed ID: 11519078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of spatial variations in shear on diffusion at the wall of an arterial branch.
    Friedman MH; Ehrlich LW
    Circ Res; 1975 Oct; 37(4):446-54. PubMed ID: 1182936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of secondary flow in steady and pulsatile flows through a symmetrical bifurcation.
    Fukushima T; Homma T; Azuma T; Harakawa K
    Biorheology; 1987; 24(1):3-12. PubMed ID: 3651581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear stress distribution in a model canine artery during steady flow.
    Lutz RJ; Cannon JN; Bischoff KB; Dedrick RL; Stiles RK; Fry DL
    Circ Res; 1977 Sep; 41(3):391-9. PubMed ID: 890894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element methods of studying mechanical factors in blood flow.
    Davids N
    Neurol Res; 1981; 3(1):83-105. PubMed ID: 6114457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress.
    Lieber BB; Giddens DP
    J Biomech; 1990; 23(6):597-605. PubMed ID: 2341421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of velocity profiles and wall shear rate along the rabbit aortoiliac bifurcation: relationship to vessel wall low-density lipoprotein (LDL) metabolism.
    Mandarino WA; Berceli SA; Sheppeck RA; Borovetz HS
    J Biomech; 1992 Sep; 25(9):985-93. PubMed ID: 1387646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis.
    Moore JE; Ku DN; Zarins CK; Glagov S
    J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between wall shear and intimal thickness at a coronary artery branch.
    Friedman MH; Bargeron CB; Deters OJ; Hutchins GM; Mark FF
    Atherosclerosis; 1987 Nov; 68(1-2):27-33. PubMed ID: 3689481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.