These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1116239)

  • 21. Age is a determinant of the glomerular morphologic and functional responses to chronic nephron loss.
    O'Donnell MP; Kasiske BL; Raij L; Keane WF
    J Lab Clin Med; 1985 Sep; 106(3):308-13. PubMed ID: 4031632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-nephron adaptations to partial renal ablation in the dog.
    Brown SA; Finco DR; Crowell WA; Choat DC; Navar LG
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F495-503. PubMed ID: 2316661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compensatory renal hypertrophy in dogs: single nephron glomerular filtration rate.
    Carrière S
    Yale J Biol Med; 1978; 51(3):307-13. PubMed ID: 735152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glomerular and tubular adaptive responses to acute nephron loss in the rat. Effect of prostaglandin synthesis inhibition.
    Pelayo JC; Shanley PF
    J Clin Invest; 1990 Jun; 85(6):1761-9. PubMed ID: 1693376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of age on the response to renal parenchymal loss.
    Aschinberg LC; Koskimies O; Bernstein J; Nash M; Edelmann CM; Spitzer A
    Yale J Biol Med; 1978; 51(3):341-5. PubMed ID: 735156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of nephron loss on glomerular hemodynamics and morphology in diabetic rats.
    O'Donnell MP; Kasiske BL; Daniels FX; Keane WF
    Diabetes; 1986 Sep; 35(9):1011-5. PubMed ID: 3743905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.
    Yared A; Kon V; Ichikawa I
    J Clin Invest; 1985 May; 75(5):1477-87. PubMed ID: 3998146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional adaptation to reduced renal mass in early development.
    Chevalier RL
    Am J Physiol; 1982 Feb; 242(2):F190-6. PubMed ID: 7065135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation of glomerular forces and flows to renal injury.
    Brenner BM
    Yale J Biol Med; 1978; 51(3):301-5. PubMed ID: 366924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced renal mass in early postnatal development. glomerular dynamics in the guinea pig.
    Chevalier RL
    Biol Neonate; 1983; 44(3):158-65. PubMed ID: 6626626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation.
    Hostetter TH; Olson JL; Rennke HG; Venkatachalam MA; Brenner BM
    Am J Physiol; 1981 Jul; 241(1):F85-93. PubMed ID: 7246778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of glomerular perfusion rate and nephron filtration rate in rats 17-60 days old.
    Aperia A; Herin P
    Am J Physiol; 1975 May; 228(5):1319-25. PubMed ID: 1130535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glomerular hemodynamics in established glycerol-induced acute renal failure in the rat.
    Wolfert AI; Oken DE
    J Clin Invest; 1989 Dec; 84(6):1967-73. PubMed ID: 2592568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-year analysis for predicting renal function and contralateral hypertrophy after robot-assisted partial nephrectomy: A three-dimensional segmentation technology study.
    Kim DK; Jang Y; Lee J; Hong H; Kim KH; Shin TY; Jung DC; Choi YD; Rha KH
    Int J Urol; 2015 Dec; 22(12):1105-11. PubMed ID: 26332540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autoregulation in rats with transplanted supernumerary kidneys.
    Gittes RF; Rist M; Treves S; Biewiner A
    Nature; 1980 Apr; 284(5757):618-20. PubMed ID: 6988726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of glomerulotubular balance in the setting of heterogeneous glomerular injury. Preservation of a close functional linkage between individual nephrons and surrounding microvasculature.
    Ichikawa I; Hoyer JR; Seiler MW; Brenner BM
    J Clin Invest; 1982 Jan; 69(1):185-98. PubMed ID: 7054238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrarenal mechanisms of salt retention after bile duct ligation in rats.
    Yarger WE; Schrader NW; Boyd MA
    J Clin Invest; 1976 Feb; 57(2):408-18. PubMed ID: 1254726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional adaptation during renal compensatory growth.
    Steels P; Borghgraef R
    Arch Int Physiol Biochim; 1972 Jan; 80(1):165-7. PubMed ID: 4111295
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on possible mechanisms of early functional compensatory adaptation in the remaining kidney.
    Diezi J; Michoud-Hausel P; Nicolas-Buxcel N
    Yale J Biol Med; 1978; 51(3):265-70. PubMed ID: 735149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-nephron adaptations to partial renal ablation in cats.
    Brown SA; Brown CA
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1002-8. PubMed ID: 7503284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.