These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11162455)
1. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Sakihama Y; Mano J; Sano S; Asada K; Yamasaki H Biochem Biophys Res Commun; 2000 Dec; 279(3):949-54. PubMed ID: 11162455 [TBL] [Abstract][Full Text] [Related]
2. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme. Goldman R; Tsyrlov IB; Grogan J; Kagan VE Biochemistry; 1997 Mar; 36(11):3186-92. PubMed ID: 9115995 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli. Sano S; Miyake C; Mikami B; Asada K J Biol Chem; 1995 Sep; 270(36):21354-61. PubMed ID: 7545669 [TBL] [Abstract][Full Text] [Related]
4. cDNA cloning of monodehydroascorbate radical reductase from cucumber: a high degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. Sano S; Asada K Plant Cell Physiol; 1994 Apr; 35(3):425-37. PubMed ID: 8055175 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [Ipomoea batatas (L.) Lam. 'Tainong 57'] storage roots. Huang GJ; Lai HC; Chang YS; Sheu MJ; Lu TL; Huang SS; Lin YH J Agric Food Chem; 2008 May; 56(9):2989-95. PubMed ID: 18393437 [TBL] [Abstract][Full Text] [Related]
6. Crystallization and preliminary crystallographic analysis of monodehydroascorbate radical reductase from cucumber. Sano S; Kang YN; Shigemizu H; Morishita N; Yoon HJ; Saito K; Asada K; Mikami B Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1498-9. PubMed ID: 15272189 [TBL] [Abstract][Full Text] [Related]
8. A direct demonstration of the catalytic action of monodehydroascorbate reductase by pulse radiolysis. Kobayashi K; Tagawa S; Sano S; Asada K J Biol Chem; 1995 Nov; 270(46):27551-4. PubMed ID: 7499215 [TBL] [Abstract][Full Text] [Related]
9. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
10. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Sakihama Y; Cohen MF; Grace SC; Yamasaki H Toxicology; 2002 Aug; 177(1):67-80. PubMed ID: 12126796 [TBL] [Abstract][Full Text] [Related]
11. Sulfite reductase of Escherichia coli is a ferrisiderophore reductase. Coves J; Eschenbrenner M; Fontecave M Biochem Biophys Res Commun; 1993 May; 192(3):1403-8. PubMed ID: 8389549 [TBL] [Abstract][Full Text] [Related]
12. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA; Carta G; Tyurina YY; Banni S; Day BW; Corongiu FP; Kagan VE Lipids; 1997 Feb; 32(2):131-42. PubMed ID: 9075202 [TBL] [Abstract][Full Text] [Related]
13. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792 [TBL] [Abstract][Full Text] [Related]
14. [Co-oxidation of phenols and 4-aminoantipyrene catalyzed by microperoxidase and their complexes with proteins]. Metelitsa DI; Arapova GS; Vidzhinaĭte RA; Demcheva MV; Litvinchuk AV; Razumas VI Biokhimiia; 1994 Sep; 59(9):1285-98. PubMed ID: 7819408 [TBL] [Abstract][Full Text] [Related]
15. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and characterization of a cDNA encoding pea monodehydroascorbate reductase. Murthy SS; Zilinskas BA J Biol Chem; 1994 Dec; 269(49):31129-33. PubMed ID: 7983054 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH. Hadzi-Tasković Sukalović V; Vuletić M; Vucinić Z; Veljović-Jovanović S J Plant Res; 2008 Jan; 121(1):115-23. PubMed ID: 18071845 [TBL] [Abstract][Full Text] [Related]
18. Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. Kagan VE; Arroyo A; Tyurin VA; Tyurina YY; Villalba JM; Navas P FEBS Lett; 1998 May; 428(1-2):43-6. PubMed ID: 9645471 [TBL] [Abstract][Full Text] [Related]
19. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase. Roma GW; Crowley LJ; Davis CA; Barber MJ Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer between protonated and unprotonated phenoxyl radicals. Omura K J Org Chem; 2008 Feb; 73(3):858-67. PubMed ID: 18179228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]