BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11163224)

  • 1. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP.
    Ortega J; Singh SK; Ishikawa T; Maurizi MR; Steven AC
    Mol Cell; 2000 Dec; 6(6):1515-21. PubMed ID: 11163224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternating translocation of protein substrates from both ends of ClpXP protease.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    EMBO J; 2002 Sep; 21(18):4938-49. PubMed ID: 12234933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities.
    Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR
    J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
    Singh SK; Grimaud R; Hoskins JR; Wickner S; Maurizi MR
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8898-903. PubMed ID: 10922052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease.
    Wah DA; Levchenko I; Rieckhof GE; Bolon DN; Baker TA; Sauer RT
    Mol Cell; 2003 Aug; 12(2):355-63. PubMed ID: 14536075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP.
    Kang SG; Ortega J; Singh SK; Wang N; Huang NN; Steven AC; Maurizi MR
    J Biol Chem; 2002 Jun; 277(23):21095-102. PubMed ID: 11923310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease.
    Beuron F; Maurizi MR; Belnap DM; Kocsis E; Booy FP; Kessel M; Steven AC
    J Struct Biol; 1998 Nov; 123(3):248-59. PubMed ID: 9878579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    J Struct Biol; 2004; 146(1-2):217-26. PubMed ID: 15037252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli.
    Szalewska A; Wegrzyn G; Taylor K
    Mol Microbiol; 1994 Aug; 13(3):469-74. PubMed ID: 7997163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.