These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 11163364)
41. Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Chroni A; Liu T; Fitzgerald ML; Freeman MW; Zannis VI Biochemistry; 2004 Feb; 43(7):2126-39. PubMed ID: 14967052 [TBL] [Abstract][Full Text] [Related]
42. Deletion of the C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage. Burgess JW; Frank PG; Franklin V; Liang P; McManus DC; Desforges M; Rassart E; Marcel YL Biochemistry; 1999 Nov; 38(44):14524-33. PubMed ID: 10545174 [TBL] [Abstract][Full Text] [Related]
43. Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Gorshkova IN; Liu T; Kan HY; Chroni A; Zannis VI; Atkinson D Biochemistry; 2006 Jan; 45(4):1242-54. PubMed ID: 16430220 [TBL] [Abstract][Full Text] [Related]
44. Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy. Bagby S; Harvey TS; Kay LE; Eagle SG; Inouye S; Ikura M Biochemistry; 1994 Mar; 33(9):2409-21. PubMed ID: 8117701 [TBL] [Abstract][Full Text] [Related]
45. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase. Cao S; Mao X; Liu D; Buck M Biomol NMR Assign; 2013 Oct; 7(2):121-8. PubMed ID: 22618864 [TBL] [Abstract][Full Text] [Related]
46. Lipid-free structure and stability of apolipoprotein A-I: probing the central region by mutation. Gorshkova IN; Liu T; Zannis VI; Atkinson D Biochemistry; 2002 Aug; 41(33):10529-39. PubMed ID: 12173940 [TBL] [Abstract][Full Text] [Related]
47. Secondary structure and backbone dynamics of human granulocyte colony-stimulating factor in solution. Werner JM; Breeze AL; Kara B; Rosenbrock G; Boyd J; Soffe N; Campbell ID Biochemistry; 1994 Jun; 33(23):7184-92. PubMed ID: 7516182 [TBL] [Abstract][Full Text] [Related]
48. Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy. Rozek A; Sparrow JT; Weisgraber KH; Cushley RJ Biochemistry; 1999 Nov; 38(44):14475-84. PubMed ID: 10545169 [TBL] [Abstract][Full Text] [Related]
49. 1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium-binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high-resolution NMR. Feher VA; Zapf JW; Hoch JA; Dahlquist FW; Whiteley JM; Cavanagh J Protein Sci; 1995 Sep; 4(9):1801-14. PubMed ID: 8528078 [TBL] [Abstract][Full Text] [Related]
50. Conformational flexibility of the N-terminal domain of apolipoprotein a-I bound to spherical lipid particles. Kono M; Okumura Y; Tanaka M; Nguyen D; Dhanasekaran P; Lund-Katz S; Phillips MC; Saito H Biochemistry; 2008 Oct; 47(43):11340-7. PubMed ID: 18831538 [TBL] [Abstract][Full Text] [Related]
51. Model for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data. DeRose EF; Li D; Darden T; Harvey S; Perrino FW; Schaaper RM; London RE Biochemistry; 2002 Jan; 41(1):94-110. PubMed ID: 11772007 [TBL] [Abstract][Full Text] [Related]
52. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods. Muskett FW; Kelly GP; Whitford D J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986 [TBL] [Abstract][Full Text] [Related]
53. Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. Renzoni D; Esposito D; Pfuhl M; Hinton JC; Higgins CF; Driscoll PC; Ladbury JE J Mol Biol; 2001 Mar; 306(5):1127-37. PubMed ID: 11237622 [TBL] [Abstract][Full Text] [Related]
54. 1H and 15N magnetic resonance assignments, secondary structure, and tertiary fold of Escherichia coli DnaJ(1-78). Hill RB; Flanagan JM; Prestegard JH Biochemistry; 1995 Apr; 34(16):5587-96. PubMed ID: 7727420 [TBL] [Abstract][Full Text] [Related]
55. A complete NMR spectral assignment of the lipid-free mouse apolipoprotein A-I (apoAI) C-terminal truncation mutant, apoAI(1-216). Yang Y; Hoyt D; Wang J Biomol NMR Assign; 2007 Jul; 1(1):109-11. PubMed ID: 19636841 [TBL] [Abstract][Full Text] [Related]
56. Complete 1H, 13C, and 15N NMR resonance assignments and secondary structure of human glutaredoxin in the fully reduced form. Sun C; Holmgren A; Bushweller JH Protein Sci; 1997 Feb; 6(2):383-90. PubMed ID: 9041640 [TBL] [Abstract][Full Text] [Related]
57. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422 [TBL] [Abstract][Full Text] [Related]
58. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403 [TBL] [Abstract][Full Text] [Related]
59. NMR studies of the secondary structure in solution and the steroid binding site of delta5-3-ketosteroid isomerase in complexes with diamagnetic and paramagnetic steroids. Zhao Q; Abeygunawardana C; Mildvan AS Biochemistry; 1997 Mar; 36(12):3458-72. PubMed ID: 9131995 [TBL] [Abstract][Full Text] [Related]
60. Resonance assignments and solution structure of the second RNA-binding domain of sex-lethal determined by multidimensional heteronuclear magnetic resonance. Lee AL; Kanaar R; Rio DC; Wemmer DE Biochemistry; 1994 Nov; 33(46):13775-86. PubMed ID: 7524663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]