These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 11163621)

  • 1. Glutamatergic neurotransmission in aging: a critical perspective.
    Segovia G; Porras A; Del Arco A; Mora F
    Mech Ageing Dev; 2001 Jan; 122(1):1-29. PubMed ID: 11163621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate-dopamine-GABA interactions in the aging basal ganglia.
    Mora F; Segovia G; Del Arco A
    Brain Res Rev; 2008 Aug; 58(2):340-53. PubMed ID: 18036669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity uptake of neurotransmitters in rat neostriatum: effects of aging.
    Strong R; Samorajski T; Gottesfeld Z
    J Neurochem; 1984 Dec; 43(6):1766-8. PubMed ID: 6149271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain.
    Mora F; Segovia G; del Arco A
    Brain Res Rev; 2007 Aug; 55(1):78-88. PubMed ID: 17561265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse.
    Kitamura Y; Zhao XH; Ohnuki T; Takei M; Nomura Y
    Neurosci Lett; 1992 Mar; 137(2):169-72. PubMed ID: 1350076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation.
    Derouiche A; Frotscher M
    Brain Res; 1991 Jun; 552(2):346-50. PubMed ID: 1680531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake.
    Asztely F; Erdemli G; Kullmann DM
    Neuron; 1997 Feb; 18(2):281-93. PubMed ID: 9052798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbances in neurotransmission processes in aging and age-related diseases.
    Ossowska K
    Pol J Pharmacol; 1993; 45(2):109-31. PubMed ID: 8401765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative meta-analysis of brain glutamate metabolites in aging.
    Roalf DR; Sydnor VJ; Woods M; Wolk DA; Scott JC; Reddy R; Moberg PJ
    Neurobiol Aging; 2020 Nov; 95():240-249. PubMed ID: 32866885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotransmission and the ontogeny of human brain.
    Retz W; Kornhuber J; Riederer P
    J Neural Transm (Vienna); 1996; 103(4):403-19. PubMed ID: 9617785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of glutamate and GABA receptor antagonists on nicotine-induced neurotransmitter changes in cognitive areas.
    Fallon S; Shearman E; Sershen H; Lajtha A
    Neurochem Res; 2007; 32(4-5):535-53. PubMed ID: 16909314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression.
    Serafini G; Pompili M; Innamorati M; Dwivedi Y; Brahmachari G; Girardi P
    Curr Pharm Des; 2013; 19(10):1898-922. PubMed ID: 23173582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aging on signal transmission and transduction systems in the gerbil brain: morphological and autoradiographic study.
    Hara H; Onodera H; Kato H; Kogure K
    Neuroscience; 1992; 46(2):475-88. PubMed ID: 1347408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains.
    Tsai G; Passani LA; Slusher BS; Carter R; Baer L; Kleinman JE; Coyle JT
    Arch Gen Psychiatry; 1995 Oct; 52(10):829-36. PubMed ID: 7575102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression.
    Bazan NG; Rodriguez de Turco EB; Allan G
    J Neurotrauma; 1995 Oct; 12(5):791-814. PubMed ID: 8594208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of the biochemistry and pharmacology of glutamatergic and GABA-ergic neurotransmission.
    Schousboe A
    Biochem Soc Trans; 1987 Apr; 15(2):205-8. PubMed ID: 2884146
    [No Abstract]   [Full Text] [Related]  

  • 17. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters.
    Poli A; Contestabile A; Migani P; Rossi L; Rondelli C; Virgili M; Bissoli R; Barnabei O
    J Neurochem; 1985 Dec; 45(6):1677-86. PubMed ID: 2865332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of action of anticonvulsants. Role of the differential effects on the active uptake of putative neurotransmitters.
    Weinberger J; Nicklas WJ; Berl S
    Neurology; 1976 Feb; 26(2):162-6. PubMed ID: 2891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of corticostriatal glutamatergic terminals in striatal dopamine release elicited by stimulation of delta-opioid receptors.
    Billet F; Dourmap N; Costentin J
    Eur J Neurosci; 2004 Nov; 20(10):2629-38. PubMed ID: 15548206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of glutamatergic neurotransmission in the nervous system.
    Niciu MJ; Kelmendi B; Sanacora G
    Pharmacol Biochem Behav; 2012 Feb; 100(4):656-64. PubMed ID: 21889952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.