BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11163990)

  • 1. Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates.
    Finlay WH; Gehmlich MG
    Int J Pharm; 2000 Dec; 210(1-2):83-95. PubMed ID: 11163990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers.
    Smith KJ; Chan HK; Brown KF
    J Aerosol Med; 1998; 11(4):231-45. PubMed ID: 10346666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of flow pattern, device and formulation on particle size distribution of nebulized aerosol.
    Hu J; Zhang R; Beng H; Deng L; Ke Q; Tan W
    Int J Pharm; 2019 Apr; 560():35-46. PubMed ID: 30664994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of realistic inspiratory flow profiles on fine particle fractions of dry powder aerosol formulations.
    Martin GP; Marriott C; Zeng XM
    Pharm Res; 2007 Feb; 24(2):361-9. PubMed ID: 17177114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Passive Dry Powder Inhaler Aerodynamic Particle Size Distribution by Multi-Stage Cascade Impactor: International Pharmaceutical Aerosol Consortium on Regulation & Science (IPAC-RS) Recommendations to Support Both Product Quality Control and Clinical Programs.
    Mitchell JP; Stein SW; Doub W; Goodey AP; Christopher JD; Patel RB; Tougas TP; Lyapustina S
    AAPS PharmSciTech; 2019 May; 20(5):206. PubMed ID: 31147791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro aerosol performance and dose uniformity between the Foradile Aerolizer and the Oxis Turbuhaler.
    Chew NY; Chan HK
    J Aerosol Med; 2001; 14(4):495-501. PubMed ID: 11791690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel system to investigate the effects of inhaled volume and rates of rise in simulated inspiratory air flow on fine particle output from a dry powder inhaler.
    Chavan V; Dalby R
    AAPS PharmSci; 2002; 4(2):E6. PubMed ID: 12102616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Aerodynamic Particle Size Distribution Between a Next Generation Impactor and a Cascade Impactor at a Range of Flow Rates.
    Yoshida H; Kuwana A; Shibata H; Izutsu KI; Goda Y
    AAPS PharmSciTech; 2017 Apr; 18(3):646-653. PubMed ID: 27173989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor.
    Kwong WT; Ho SL; Coates AL
    J Aerosol Med; 2000; 13(4):303-14. PubMed ID: 11262437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices.
    DeHaan WH; Finlay WH
    J Aerosol Med; 2001; 14(3):361-7. PubMed ID: 11693848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and application of a new modular adapter for laser diffraction characterization of inhalation aerosols.
    de Boer AH; Gjaltema D; Hagedoorn P; Schaller M; Witt W; Frijlink HW
    Int J Pharm; 2002 Dec; 249(1-2):233-45. PubMed ID: 12433451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose emission characteristics of placebo PulmoSphere® particles are unaffected by a subject's inhalation maneuver.
    Weers J; Ung K; Le J; Rao N; Ament B; Axford G; Maltz D; Chan L
    J Aerosol Med Pulm Drug Deliv; 2013 Feb; 26(1):56-68. PubMed ID: 22691109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between inertial impaction and laser diffraction sizing data for aerosolized carrier-based dry powder formulations.
    Zeng XM; MacRitchie HB; Marriott C; Martin GP
    Pharm Res; 2006 Sep; 23(9):2200-9. PubMed ID: 16900411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.
    Fishler R; Verhoeven F; de Kruijf W; Sznitman J
    Eur J Pharm Sci; 2018 Feb; 113():152-158. PubMed ID: 28821437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nebulizer type with different pediatric aerosol masks on drug deposition in a model of a spontaneously breathing small child.
    Lin HL; Wan GH; Chen YH; Fink JB; Liu WQ; Liu KY
    Respir Care; 2012 Nov; 57(11):1894-900. PubMed ID: 22418694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.
    Gurses BK; Smaldone GC
    J Aerosol Med; 2003; 16(4):387-94. PubMed ID: 14977429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodology to study impactor particle reentrainment and a proposed stage coating for the NGI.
    Rissler J; Asking L; Dreyer JK
    J Aerosol Med Pulm Drug Deliv; 2009 Dec; 22(4):309-16. PubMed ID: 19415989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of particle properties in pharmaceutical powder inhalation formulations.
    Chew NY; Chan HK
    J Aerosol Med; 2002; 15(3):325-30. PubMed ID: 12396421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass output and particle size distribution of glucocorticosteroids emitted from different inhalation devices depending on various inspiratory parameters.
    Kamin WE; Genz T; Roeder S; Scheuch G; Trammer T; Juenemann R; Cloes RM
    J Aerosol Med; 2002; 15(1):65-73. PubMed ID: 12006147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.