These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11164241)

  • 1. The neuronal refractory period causes a short-term peak in the autocorrelation function.
    Bar-Gad I; Ritov Y; Bergman H
    J Neurosci Methods; 2001 Jan; 104(2):155-63. PubMed ID: 11164241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations.
    Bar-Gad I; Ritov Y; Vaadia E; Bergman H
    J Neurosci Methods; 2001 May; 107(1-2):1-13. PubMed ID: 11389936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation.
    Aldridge JW; Gilman S
    Brain Res; 1991 Mar; 543(1):123-38. PubMed ID: 2054667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuron firing in driven nonlinear integrate-and-fire models.
    Kostur M; Schindler M; Talkner P; Hänggi P
    Math Biosci; 2007 Jun; 207(2):302-11. PubMed ID: 17011592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent.
    Bar-Gad I; Heimer G; Ritov Y; Bergman H
    J Neurosci; 2003 May; 23(10):4012-6. PubMed ID: 12764086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auto- and cross-correlation analysis of subthalamic nucleus neuronal activity in neostriatal- and globus pallidal-lesioned rats.
    Ryan LJ; Sanders DJ; Clark KB
    Brain Res; 1992 Jun; 583(1-2):253-61. PubMed ID: 1504831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spectral shaping of neural discharges by refractory effects.
    Edwards BW; Wakefield GH; Powers NL
    J Acoust Soc Am; 1993 Jun; 93(6):3353-64. PubMed ID: 8326062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic models for single neuron firing trains: a survey.
    Fienberg SE
    Biometrics; 1974 Sep; 30(3):399-427. PubMed ID: 4370394
    [No Abstract]   [Full Text] [Related]  

  • 10. Refractoriness and neural precision.
    Berry MJ; Meister M
    J Neurosci; 1998 Mar; 18(6):2200-11. PubMed ID: 9482804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent modulation of unit activity in globus pallidus and caudate nucleus: changes induced by vestibular nucleus and pyramidal tract stimulation.
    Matsunami K; Cohen B
    Brain Res; 1975 Jun; 91(1):140-6. PubMed ID: 1131694
    [No Abstract]   [Full Text] [Related]  

  • 12. Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia.
    Ruskin DN; Bergstrom DA; Kaneoke Y; Patel BN; Twery MJ; Walters JR
    J Neurophysiol; 1999 May; 81(5):2046-55. PubMed ID: 10322046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of neuronal responses in the subthalamic nucleus following globus pallidus and neostriatal lesions in rats.
    Ryan LJ; Clark KB
    Brain Res Bull; 1992; 29(3-4):319-27. PubMed ID: 1393604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuronal modeling paradigm in the presence of refractoriness.
    Buonocore A; Giorno V; Nobile AG; Ricciardi LM
    Biosystems; 2002; 67(1-3):35-43. PubMed ID: 12459282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia.
    Gillies A; Willshaw D; Li Z
    Proc Biol Sci; 2002 Mar; 269(1491):545-51. PubMed ID: 11916469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lesion of the subthalamic nucleus or globus pallidus does not cause chaotic firing patterns in basal ganglia neurons in rats.
    Ryan LJ
    Brain Res; 2000 Aug; 873(2):263-7. PubMed ID: 10930552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity in the globus pallidus in primary dystonia and off-period dystonia.
    Hashimoto T
    J Neurol; 2000 Sep; 247 Suppl 5():V49-52. PubMed ID: 11081803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey.
    Nambu A; Tokuno H; Hamada I; Kita H; Imanishi M; Akazawa T; Ikeuchi Y; Hasegawa N
    J Neurophysiol; 2000 Jul; 84(1):289-300. PubMed ID: 10899204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata.
    Celada P; Paladini CA; Tepper JM
    Neuroscience; 1999 Mar; 89(3):813-25. PubMed ID: 10199615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrical activity in globus pallidus evoked by the stimulation of the subthalamic nucleus and putamen].
    Mizutani T
    Seishin Shinkeigaku Zasshi; 1966 May; 68(5):549-61. PubMed ID: 6007471
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.