These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11164643)

  • 1. Neural networks through the hourglass.
    Turova T
    Biosystems; 2000; 58(1-3):159-65. PubMed ID: 11164643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic modification by correlated activity: Hebb's postulate revisited.
    Bi G; Poo M
    Annu Rev Neurosci; 2001; 24():139-66. PubMed ID: 11283308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hebb's concept of synaptic plasticity and neuronal cell assemblies.
    Spatz HC
    Behav Brain Res; 1996 Jun; 78(1):3-7. PubMed ID: 8793031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural synaptic plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect.
    Knoblauch A; Körner E; Körner U; Sommer FT
    PLoS One; 2014; 9(5):e96485. PubMed ID: 24858841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity.
    Effenberger F; Jost J; Levina A
    PLoS Comput Biol; 2015 Sep; 11(9):e1004420. PubMed ID: 26335425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donald O. Hebb's synapse and learning rule: a history and commentary.
    Cooper SJ
    Neurosci Biobehav Rev; 2005 Jan; 28(8):851-74. PubMed ID: 15642626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.
    Hiratani N; Fukai T
    Front Neural Circuits; 2016; 10():41. PubMed ID: 27303271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized dynamics in plastic neural networks: bistability and coherence.
    Kalitzin S; van Dijk BW; Spekreijse H
    Biol Cybern; 2000 Aug; 83(2):139-50. PubMed ID: 10966053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Webs, cell assemblies, and chunking in neural nets: introduction.
    Wickelgren WA
    Can J Exp Psychol; 1999 Mar; 53(1):118-31. PubMed ID: 10389494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of pruning in simulated large-scale spiking neural networks.
    Iglesias J; Eriksson J; Grize F; Tomassini M; Villa AE
    Biosystems; 2005; 79(1-3):11-20. PubMed ID: 15649585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent regulation of synchronized activity in living neuronal networks.
    Yamamoto H; Kubota S; Chida Y; Morita M; Moriya S; Akima H; Sato S; Hirano-Iwata A; Tanii T; Niwano M
    Phys Rev E; 2016 Jul; 94(1-1):012407. PubMed ID: 27575164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks.
    Yu H; Guo X; Wang J; Deng B; Wei X
    Chaos; 2014 Sep; 24(3):033125. PubMed ID: 25273205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical investigation of self-organized criticality in neural networks.
    Droste F; Do AL; Gross T
    J R Soc Interface; 2013 Jan; 10(78):20120558. PubMed ID: 22977096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of associative memory with memristive neural networks.
    Pershin YV; Di Ventra M
    Neural Netw; 2010 Sep; 23(7):881-6. PubMed ID: 20605401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of Hebbian Cell Assemblies for Nonlinear Computation.
    Tetzlaff C; Dasgupta S; Kulvicius T; Wörgötter F
    Sci Rep; 2015 Aug; 5():12866. PubMed ID: 26249242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.
    Amiri M; Amiri M; Nazari S; Faez K
    J Theor Biol; 2016 Dec; 410():107-118. PubMed ID: 27620666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaping Neural Circuits by High Order Synaptic Interactions.
    Ravid Tannenbaum N; Burak Y
    PLoS Comput Biol; 2016 Aug; 12(8):e1005056. PubMed ID: 27517461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.