BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 11164793)

  • 1. The gain of initial somatosensory evoked potentials alters with practice of an accurate motor task.
    Nelson AJ; Brooke JD; McIlroy WE; Bishop DC; Norrie RG
    Brain Res; 2001 Feb; 890(2):272-9. PubMed ID: 11164793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. I. Kinaesthetic task demands.
    Staines WR; Brooke JD; Cheng J; Misiaszek JE; MacKay WA
    Exp Brain Res; 1997 Jun; 115(1):147-55. PubMed ID: 9224842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-relevant selective modulation of somatosensory afferent paths from the lower limb.
    Staines WR; Brooke JD; McIlroy WE
    Neuroreport; 2000 Jun; 11(8):1713-9. PubMed ID: 10852231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cerebral somatosensory evoked potentials arising from tibial and sural nerve stimulation during rhythmic active and passive movements of the human lower limb.
    Brooke JD; Staines WR; Cheng J; Misiaszek JE
    Electromyogr Clin Neurophysiol; 1997; 37(8):451-61. PubMed ID: 9444484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. II. Correlation with rate of stretch of extensor muscles of the leg.
    Staines WR; Brooke JD; Misiaszek JE; McIlroy WE
    Exp Brain Res; 1997 Jun; 115(1):156-64. PubMed ID: 9224843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord.
    Knikou M; Kay E; Schmit BD
    Exp Neurol; 2007 Jul; 206(1):146-58. PubMed ID: 17543951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phasic modulation of somatosensory potentials during passive movement.
    Staines WR; Brooke JD; Angerilli PA; McIlroy WE
    Neuroreport; 1996 Nov; 7(18):2971-4. PubMed ID: 9116221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man.
    Nielsen J; Petersen N; Fedirchuk B
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):473-84. PubMed ID: 9192318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutaneous reflexes of the human leg during passive movement.
    Brooke JD; McIlroy WE; Staines WR; Angerilli PA; Peritore GF
    J Physiol; 1999 Jul; 518 ( Pt 2)(Pt 2):619-28. PubMed ID: 10381606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans.
    Cogiamanian F; Vergari M; Pulecchi F; Marceglia S; Priori A
    Clin Neurophysiol; 2008 Nov; 119(11):2636-40. PubMed ID: 18786856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force.
    Wasaka T; Nakata H; Kida T; Kakigi R
    Exp Brain Res; 2005 Sep; 166(1):118-25. PubMed ID: 15856201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating of somatosensory evoked potentials during voluntary movement of the lower limb in man.
    Morita H; Petersen N; Nielsen J
    Exp Brain Res; 1998 May; 120(2):143-52. PubMed ID: 9629956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term physical exercise and somatosensory event-related potentials.
    Iwadate M; Mori A; Ashizuka T; Takayose M; Ozawa T
    Exp Brain Res; 2005 Jan; 160(4):528-32. PubMed ID: 15586274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatosensory central conduction time after sural and tibial nerve stimulation.
    Delberghe X; Brunko E; Mavroudakis N; Zegers de Beyl D
    Acta Neurol Belg; 1994; 94(4):251-5. PubMed ID: 7839802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered cortical integration of dual somatosensory input following the cessation of a 20 min period of repetitive muscle activity.
    Haavik Taylor H; Murphy BA
    Exp Brain Res; 2007 Apr; 178(4):488-98. PubMed ID: 17136532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction properties of epidurally recorded spinal cord potentials following lower limb stimulation in man.
    Halonen JP; Jones SJ; Edgar MA; Ransford AO
    Electroencephalogr Clin Neurophysiol; 1989; 74(3):161-74. PubMed ID: 2470572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.
    Anzellotti F; Onofrj M; Bonanni L; Saracino A; Franciotti R
    Neuroimage Clin; 2016; 12():212-8. PubMed ID: 27489768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid reversible changes to multiple levels of the human somatosensory system following the cessation of repetitive contractions: a somatosensory evoked potential study.
    Murphy BA; Haavik Taylor H; Wilson SA; Oliphant G; Mathers KM
    Clin Neurophysiol; 2003 Aug; 114(8):1531-7. PubMed ID: 12888037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings.
    Allison T; McCarthy G; Wood CC; Jones SJ
    Brain; 1991 Dec; 114 ( Pt 6)():2465-503. PubMed ID: 1782527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.