These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 11164880)

  • 1. Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study.
    Stewart LM; Walsh V; Rothwell JC
    Neuropsychologia; 2001; 39(4):415-9. PubMed ID: 11164880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation.
    Gerwig M; Kastrup O; Meyer BU; Niehaus L
    J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness.
    Terhune DB; Murray E; Near J; Stagg CJ; Cowey A; Cohen Kadosh R
    Cereb Cortex; 2015 Nov; 25(11):4341-50. PubMed ID: 25725043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and motor cortex excitability: a transcranial magnetic stimulation study.
    Boroojerdi B; Meister IG; Foltys H; Sparing R; Cohen LG; Töpper R
    Clin Neurophysiol; 2002 Sep; 113(9):1501-4. PubMed ID: 12169333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS).
    Sparing R; Dambeck N; Stock K; Meister IG; Huetter D; Boroojerdi B
    Neurosci Lett; 2005 Jul; 382(3):312-6. PubMed ID: 15925110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of TMS phosphene threshold estimation: Toward a standardized protocol.
    Mazzi C; Savazzi S; Abrahamyan A; Ruzzoli M
    Brain Stimul; 2017; 10(3):609-617. PubMed ID: 28209346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphene and motor transcranial magnetic stimulation thresholds are correlated: A meta-analytic investigation.
    Phylactou P; Pham TNM; Narskhani N; Diya N; Seminowicz DA; Schabrun SM
    Prog Neuropsychopharmacol Biol Psychiatry; 2024 Jul; 133():111020. PubMed ID: 38692474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study.
    Deblieck C; Thompson B; Iacoboni M; Wu AD
    Hum Brain Mapp; 2008 Jun; 29(6):662-70. PubMed ID: 17598167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Dynamics of Corticocortical Inhibition in Human Visual Cortex: A TMS Study.
    Khammash D; Simmonite M; Polk TA; Taylor SF; Meehan SK
    Neuroscience; 2019 Nov; 421():31-38. PubMed ID: 31676351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing short-latency cortical inhibition in the visual cortex with transcranial magnetic stimulation: A reliability study.
    Khammash D; Simmonite M; Polk TA; Taylor SF; Meehan SK
    Brain Stimul; 2019; 12(3):702-704. PubMed ID: 30700394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migraine-linked characteristics of transcranial magnetic stimulation-induced phosphenes.
    Ekkert A; Noreikaitė K; Valiulis V; Ryliškienė K
    J Integr Neurosci; 2019 Dec; 18(4):463-466. PubMed ID: 31912706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consecutive transcranial magnetic stimulation: phosphene thresholds in migraineurs and controls.
    Young WB; Oshinsky ML; Shechter AL; Gebeline-Myers C; Bradley KC; Wassermann EM
    Headache; 2004 Feb; 44(2):131-5. PubMed ID: 14756850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of increase in phosphene threshold with reduction of migraine frequency: observation of levetiracetam-treated subjects.
    Young W; Shaw J; Bloom M; Gebeline-Myers C
    Headache; 2008; 48(10):1490-8. PubMed ID: 19076647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphene thresholds evoked with single and double TMS pulses.
    Kammer T; Baumann LW
    Clin Neurophysiol; 2010 Mar; 121(3):376-9. PubMed ID: 20079689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.