BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11164961)

  • 1. Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration.
    Kim MD; Rhee SK; Seo JH
    J Biotechnol; 2001 Jan; 85(1):41-8. PubMed ID: 11164961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexpression of BiP increased antithrombotic hirudin production in recombinant Saccharomyces cerevisiae.
    Kim MD; Han KC; Kang HA; Rhee SK; Seo JH
    J Biotechnol; 2003 Feb; 101(1):81-7. PubMed ID: 12523972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger beta-galactosidase production.
    Oliveira C; Teixeira JA; Lima N; Da Silva NA; Domingues L
    J Biosci Bioeng; 2007 Apr; 103(4):318-24. PubMed ID: 17502272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of yeast proteases on hirudin expression in Saccharomyces cerevisiae.
    Pohlig G; Zimmermann W; Heim J
    Biomed Biochim Acta; 1991; 50(4-6):711-6. PubMed ID: 1801748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential cloned gene integration in the yeast Kluyveromyces lactis.
    Wang YC; Chuang LL; Lee FW; Da Silva NA
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):523-7. PubMed ID: 12759787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable continuous constitutive expression of a heterologous protein in Saccharomyces cerevisiae without selection pressure.
    Ibba M; Kuhla J; Smith A; Küenzi M
    Appl Microbiol Biotechnol; 1993 Jul; 39(4-5):526-31. PubMed ID: 7763923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of GAP promoter variants on hirudin production, average plasmid copy number and cell growth in Saccharomyces cerevisiae.
    Janes M; Meyhack B; Zimmermann W; Hinnen A
    Curr Genet; 1990 Aug; 18(2):97-103. PubMed ID: 2225146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a system for multicopy gene integration in Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Sibirny AA
    J Microbiol Methods; 2016 Jan; 120():44-9. PubMed ID: 26529647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hirudin variants production by genetic engineered microbial factory.
    Zhang J; Lan N
    Biotechnol Genet Eng Rev; 2018 Oct; 34(2):261-280. PubMed ID: 30095033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synthesis of hirudin variant 1 (HV1) gene and primary study of expression in yeast].
    Zan Y; Sun M; Guo R; Dai C
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1998 Oct; 20(5):361-6. PubMed ID: 11717993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological characterization of the yeast metallothionein (CUP1) promoter, and consequences of overexpressing its transcriptional activator, ACE1.
    Hottiger T; Fürst P; Pohlig G; Heim J
    Yeast; 1994 Mar; 10(3):283-96. PubMed ID: 8017099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal proteolytic degradation of recombinant desulfato-hirudin and its mutants in the yeast Saccharomyces cerevisiae.
    Heim J; Takabayashi K; Meyhack B; Märki W; Pohlig G
    Eur J Biochem; 1994 Dec; 226(2):341-53. PubMed ID: 8001551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae.
    Choi ES; Sohn JH; Rhee SK
    Appl Microbiol Biotechnol; 1994 Dec; 42(4):587-94. PubMed ID: 7765734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ty1-mediated integration of expression cassettes: host strain effects, stability, and product synthesis.
    Lee FW; Da Silva NA
    Biotechnol Prog; 1996; 12(4):548-54. PubMed ID: 8987481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris.
    Rosenfeld SA; Nadeau D; Tirado J; Hollis GF; Knabb RM; Jia S
    Protein Expr Purif; 1996 Dec; 8(4):476-82. PubMed ID: 8954896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae.
    Kim MD; Lee TH; Lim HK; Seo JH
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):259-62. PubMed ID: 15048590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of recombinant hirudin by high cell density fed-batch cultivations of a Saccharomyces cerevisiae strain: physiological considerations during the bioprocess design.
    Mendoza-Vega O; Hebert C; Brown SW
    J Biotechnol; 1994 Feb; 32(3):249-59. PubMed ID: 7764718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved efficiency and stability of multiple cloned gene insertions at the delta sequences of Saccharomyces cerevisiae.
    Lee FW; Da Silva NA
    Appl Microbiol Biotechnol; 1997 Sep; 48(3):339-45. PubMed ID: 9352677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.