These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11165093)

  • 1. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. II. Mechanical energy (work) and thermal energy (heat) determinations of compact unloading and ejection.
    DeCrosta MT; Schwartz JB; Wigent RJ; Marshall K
    Int J Pharm; 2001 Feb; 213(1-2):45-62. PubMed ID: 11165093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction.
    DeCrosta MT; Schwartz JB; Wigent RJ; Marshall K
    Int J Pharm; 2000 Mar; 198(1):113-34. PubMed ID: 10722955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.
    Buckner IS; Friedman RA; Wurster DE
    J Pharm Sci; 2010 Feb; 99(2):861-70. PubMed ID: 19653279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis of energy dissipation by pharmaceutical tablets during stress unloading.
    Hoag SW; Rippie EG
    J Pharm Sci; 1994 Jun; 83(6):903-8. PubMed ID: 9120830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders.
    Uzondu B; Leung LY; Mao C; Yang CY
    Int J Pharm; 2018 May; 543(1-2):234-244. PubMed ID: 29621552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the microstructure during the process of consolidation and bonding in soft granular solids.
    Yohannes B; Gonzalez M; Abebe A; Sprockel O; Nikfar F; Kiang S; CuitiƱo AM
    Int J Pharm; 2016 Apr; 503(1-2):68-77. PubMed ID: 26902721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing compaction-induced thermodynamic changes in a common pharmaceutical excipient.
    Wurster DE; Buckner IS
    J Pharm Sci; 2012 Aug; 101(8):2960-7. PubMed ID: 22696398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.
    Gamlen MJ; Martini LG; Al Obaidy KG
    Drug Dev Ind Pharm; 2015 Jan; 41(1):163-9. PubMed ID: 24171692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure evolution of tablets during compression unloading.
    Rippie EG; Morehead WT
    J Pharm Sci; 1994 May; 83(5):708-15. PubMed ID: 8071826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ultrasonic vibration on the compaction characteristics of paracetamol.
    Levina M; Rubinstein MH
    J Pharm Sci; 2000 Jun; 89(6):705-23. PubMed ID: 10824129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the die compaction of powders used in pharmaceutics.
    Aryanpour G; Farzaneh M
    Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator.
    Tatavarti AS; Muller FX; Hoag SW
    Int J Pharm; 2008 Feb; 348(1-2):46-53. PubMed ID: 17714895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent deformation of some direct compression excipients.
    Rees JE; Rue PJ
    J Pharm Pharmacol; 1978 Oct; 30(10):601-7. PubMed ID: 30812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of multivariate methods to compression behavior evaluation of directly compressible materials.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compaction properties of L-lysine salts.
    Sun C; Grant DJ
    Pharm Res; 2001 Mar; 18(3):281-6. PubMed ID: 11442265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the unloading conditions on capping and lamination: Study on a compaction simulator.
    Mazel V; Desbois L; Tchoreloff P
    Int J Pharm; 2019 Aug; 567():118468. PubMed ID: 31252150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel tool for the prediction of tablet sticking during high speed compaction.
    Abdel-Hamid S; Betz G
    Pharm Dev Technol; 2012; 17(6):747-54. PubMed ID: 21563986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Die wall pressure measurement for evaluation of compaction property of pharmaceutical materials.
    Takeuchi H; Nagira S; Yamamoto H; Kawashima Y
    Int J Pharm; 2004 Apr; 274(1-2):131-8. PubMed ID: 15072789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The release of a model low-dose drug (riboflavine) from hard gelatin capsule formulations.
    Stewart AG; Grant DJ; Newton JM
    J Pharm Pharmacol; 1979 Jan; 31(1):1-6. PubMed ID: 32357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of traditional and novel tableting excipients: physical and compaction properties.
    Hentzschel CM; Sakmann A; Leopold CS
    Pharm Dev Technol; 2012; 17(6):649-53. PubMed ID: 21740091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.