These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11165788)

  • 1. Development and regulation of response properties in spinal cord motoneurons.
    Perrier JF; Hounsgaard J
    Brain Res Bull; 2000 Nov; 53(5):529-35. PubMed ID: 11165788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons.
    Lombardo J; Sun J; Harrington MA
    PLoS One; 2018; 13(3):e0193948. PubMed ID: 29579068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological changes accompanying anatomical remodeling of mammalian motoneurons during postnatal development.
    Cameron WE; Núñez-Abades PA
    Brain Res Bull; 2000 Nov; 53(5):523-7. PubMed ID: 11165787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal plasticity mediated by postsynaptic L-type Ca2+ channels.
    Perrier JF; Alaburda A; Hounsgaard J
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):223-9. PubMed ID: 12589920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent sodium and calcium currents in rat hypoglossal motoneurons.
    Powers RK; Binder MD
    J Neurophysiol; 2003 Jan; 89(1):615-24. PubMed ID: 12522206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of ryanodine and inositol triphosphate receptors in regulation of plateau potentials in turtle spinal motoneurons.
    Mejia-Gervacio S; Hounsgaard J; Diaz-Muñoz M
    Neuroscience; 2004; 123(1):123-30. PubMed ID: 14667447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A-, T-, and H-type currents shape intrinsic firing of developing rat abducens motoneurons.
    Russier M; Carlier E; Ankri N; Fronzaroli L; Debanne D
    J Physiol; 2003 May; 549(Pt 1):21-36. PubMed ID: 12651919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
    Bennett DJ; Li Y; Siu M
    J Neurophysiol; 2001 Oct; 86(4):1955-71. PubMed ID: 11600653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.
    Grande G; Bui TV; Rose PK
    J Neurophysiol; 2007 Jun; 97(6):4023-35. PubMed ID: 17428909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of electrical excitability in motoneurons.
    Spitzer NC; Vincent A; Lautermilch NJ
    Brain Res Bull; 2000 Nov; 53(5):547-52. PubMed ID: 11165790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence.
    Carabelli V; Marcantoni A; Comunanza V; Carbone E
    Eur Biophys J; 2007 Sep; 36(7):753-62. PubMed ID: 17340096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current.
    Perrier JF; Hounsgaard J
    J Neurophysiol; 2003 Feb; 89(2):954-9. PubMed ID: 12574471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor Neurons.
    Hounsgaard J
    Compr Physiol; 2017 Mar; 7(2):463-484. PubMed ID: 28333379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity.
    Fossat P; Sibon I; Le Masson G; Landry M; Nagy F
    Eur J Neurosci; 2007 Jan; 25(1):127-35. PubMed ID: 17241274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin AT(1)-receptors depolarize neonatal spinal motoneurons and other ventral horn neurons via two different conductances.
    Oz M; Renaud LP
    J Neurophysiol; 2002 Nov; 88(5):2857-63. PubMed ID: 12424318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool.
    Powers RK; Binder MD
    J Neurophysiol; 1985 Feb; 53(2):497-517. PubMed ID: 2984351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perinatal development of lumbar motoneurons and their inputs in the rat.
    Vinay L; Brocard F; Pflieger JF; Simeoni-Alias J; Clarac F
    Brain Res Bull; 2000 Nov; 53(5):635-47. PubMed ID: 11165799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents.
    Bui TV; Ter-Mikaelian M; Bedrossian D; Rose PK
    J Neurophysiol; 2006 Jan; 95(1):225-41. PubMed ID: 16267115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder.
    Hashitani H; Brading AF
    Br J Pharmacol; 2003 Sep; 140(1):159-69. PubMed ID: 12967945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.