These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11165827)

  • 1. Effect of the molecular weight of poly(epsilon-caprolactone-co-DL-lactide) on toremifene citrate release from copolymer/silica xerogel composites.
    Rich J; Kortesuo P; Ahola M; Yli-Urpo A; Kiesvaara J; Seppälä J
    Int J Pharm; 2001 Jan; 212(1):121-30. PubMed ID: 11165827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of biodegradable epsilon-caprolactone-co-D, L-lactide/silica xerogel composites containing toremifene citrate.
    Ahola M; Rich J; Kortesuo P; Kiesvaara J; Seppälä J; Yli-Urpo A
    Int J Pharm; 1999 Apr; 181(2):181-91. PubMed ID: 10370214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica xerogel as an implantable carrier for controlled drug delivery--evaluation of drug distribution and tissue effects after implantation.
    Kortesuo P; Ahola M; Karlsson S; Kangasniemi I; Yli-Urpo A; Kiesvaara J
    Biomaterials; 2000 Jan; 21(2):193-8. PubMed ID: 10632401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica xerogel carrier material for controlled release of toremifene citrate.
    Ahola M; Kortesuo P; Kangasniemi I; Kiesvaara J; Yli-Urpo A
    Int J Pharm; 2000 Feb; 195(1-2):219-27. PubMed ID: 10675699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro release behavior of toremifene citrate from sol-gel processed sintered silica xerogels.
    Ahola M; Kortesuo P; Kangasniemi I; Kiesvaara J; Yli-Urpo A
    Drug Dev Ind Pharm; 1999 Aug; 25(8):955-9. PubMed ID: 10434140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/ bioactive glass composites.
    Rich J; Jaakkola T; Tirri T; Närhi T; Yli-Urpo A; Seppälä J
    Biomaterials; 2002 May; 23(10):2143-50. PubMed ID: 11962655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel-processed sintered silica xerogel as a carrier in controlled drug delivery.
    Kortesuo P; Ahola M; Karlsson S; Kangasniemi I; Kiesvaara J; Yli-Urpo A
    J Biomed Mater Res; 1999 Feb; 44(2):162-7. PubMed ID: 10397917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of sol-gel processed spray dried silica gel microspheres as carrier in controlled drug delivery.
    Kortesuo P; Ahola M; Kangas M; Kangasniemi I; Yli-Urpo A; Kiesvaara J
    Int J Pharm; 2000 May; 200(2):223-9. PubMed ID: 10867252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(3-hydroxybutyrate-co-epsilon-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-epsilon-caprolactone) terpolymers as novel materials for colloidal drug delivery systems.
    Pignatello R; Musumeci T; Impallomeni G; Carnemolla GM; Puglisi G; Ballistreri A
    Eur J Pharm Sci; 2009 Jun; 37(3-4):451-62. PubMed ID: 19504659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone).
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo.
    Pitt CG; Gratzl MM; Kimmel GL; Surles J; Schindler A
    Biomaterials; 1981 Oct; 2(4):215-20. PubMed ID: 7326315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of epsilon-caprolactone/DL-lactide (epsilon-CL/DL-LA) copolymers with a minor epsilon-CL content.
    Hiljanen-Vainio MP; Orava PA; Seppälä JV
    J Biomed Mater Res; 1997 Jan; 34(1):39-46. PubMed ID: 8978651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-xerogel composites for controlled release wound dressings.
    Costache MC; Qu H; Ducheyne P; Devore DI
    Biomaterials; 2010 Aug; 31(24):6336-43. PubMed ID: 20510447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants.
    Stanković M; Tomar J; Hiemstra C; Steendam R; Frijlink HW; Hinrichs WL
    Eur J Pharm Biopharm; 2014 Jul; 87(2):329-37. PubMed ID: 24602675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.