These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11165827)

  • 21. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-associating poly(ethylene oxide)-b-poly(alpha-cholesteryl carboxylate-epsilon-caprolactone) block copolymer for the solubilization of STAT-3 inhibitor cucurbitacin I.
    Mahmud A; Patel S; Molavi O; Choi P; Samuel J; Lavasanifar A
    Biomacromolecules; 2009 Mar; 10(3):471-8. PubMed ID: 19175305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-controlled drug delivery across biodegradable copolymer. I. Delivery kinetics of levonorgestrel and estradiol through (caprolactone/lactide) block copolymer.
    Ye WP; Chien YW
    Pharm Dev Technol; 1996 Apr; 1(1):1-9. PubMed ID: 9552325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of microspheres from the copolymers of lactide and epsilon-caprolactone to the controlled release of steroids.
    Buntner B; Nowak M; Kasperczyk J; Ryba M; Grieb P; Walski M; Dobrzyñski P; Bero M
    J Control Release; 1998 Dec; 56(1-3):159-67. PubMed ID: 9801439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters.
    Pitt CG; Gratzl MM; Jeffcoat AR; Zweidinger R; Schindler A
    J Pharm Sci; 1979 Dec; 68(12):1534-8. PubMed ID: 529046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel poly(L-lactide-co-ε-caprolactone) matrices obtained with the use of Zr[Acac]₄ as nontoxic initiator for long-term release of immunosuppressive drugs.
    Jelonek K; Kasperczyk J; Li S; Dobrzynski P; Janeczek H; Jarzabek B
    Biomed Res Int; 2013; 2013():607351. PubMed ID: 24286081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies.
    Lemmouchi Y; Schacht E; Kageruka P; De Deken R; Diarra B; Diall O; Geerts S
    Biomaterials; 1998 Oct; 19(20):1827-37. PubMed ID: 9855183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro release of trypanocidal drugs from biodegradable implants based on poly(epsilon-caprolactone) and poly(D,L-lactide).
    Lemmouchi Y; Schacht E; Lootens C
    J Control Release; 1998 Oct; 55(1):79-85. PubMed ID: 9795018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro.
    Qiao M; Chen D; Ma X; Hu H
    Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.
    Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M
    Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone).
    Cho H; An J
    Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of Biodegradable and Elastic Poly(ε-caprolactone-co-lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier.
    Park JH; Lee BK; Park SH; Kim MG; Lee JW; Lee HY; Lee HB; Kim JH; Kim MS
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28335550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-aggregation of cationically modified poly(ε-caprolactone)
    Charoongchit P; Suksiriworapong J; Sripha K; Mao S; Sapin-Minet A; Maincent P; Junyaprasert VB
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():444-455. PubMed ID: 28024608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.
    Qiao M; Chen D; Ma X; Liu Y
    Int J Pharm; 2005 Apr; 294(1-2):103-12. PubMed ID: 15814234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vitro controlled release of doxorubicin from silica xerogels.
    Prokopowicz M
    J Pharm Pharmacol; 2007 Oct; 59(10):1365-73. PubMed ID: 17910811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis.
    Ahola N; Veiranto M; Männistö N; Karp M; Rich J; Efimov A; Seppälä J; Kellomäki M
    Biomatter; 2012; 2(4):213-25. PubMed ID: 23507887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(epsilon-caprolactone-co-D,L-lactide) /silk fibroin composite materials: preparation and characterization.
    Kesenci K; Motta A; Fambri L; Migliaresi C
    J Biomater Sci Polym Ed; 2001; 12(3):337-51. PubMed ID: 11484941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycine--the effect of copolymer chain microstructure on drug release rate.
    Jelonek K; Kasperczyk J; Li S; Dobrzynski P; Jarzabek B
    Int J Pharm; 2011 Jul; 414(1-2):203-9. PubMed ID: 21621596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.