These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11165919)

  • 1. Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography.
    Ohl FW; Schulze H; Scheich H; Freeman WJ
    J Physiol Paris; 2000; 94(5-6):549-54. PubMed ID: 11165919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex.
    Ohl FW; Scheich H; Freeman WJ
    J Neurophysiol; 2000 May; 83(5):3123-32. PubMed ID: 10805706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contralateral White Noise Selectively Changes Right Human Auditory Cortex Activity Caused by a FM-Direction Task.
    Behne N; Scheich H; Brechmann A
    J Neurophysiol; 2005 Jan; 93(1):414-23. PubMed ID: 15356179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic representation of missing fundamental complex sounds in the human auditory cortex.
    Fujioka T; Ross B; Okamoto H; Takeshima Y; Kakigi R; Pantev C
    Eur J Neurosci; 2003 Jul; 18(2):432-40. PubMed ID: 12887425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus-specific adaptation in field potentials and neuronal responses to frequency-modulated tones in the primary auditory cortex.
    Klein C; von der Behrens W; Gaese BH
    Brain Topogr; 2014 Jul; 27(4):599-610. PubMed ID: 24863565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.
    Measor K; Yarrow S; Razak KA
    Hear Res; 2018 Sep; 367():137-148. PubMed ID: 29853324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early and late patterns of stimulus-related activity in auditory cortex of trained animals.
    Ohl FW; Deliano M; Scheich H; Freeman WJ
    Biol Cybern; 2003 May; 88(5):374-9. PubMed ID: 12750899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].
    Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H
    Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation.
    Mendelson JR; Cynader MS
    Brain Res; 1985 Feb; 327(1-2):331-5. PubMed ID: 3986511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the 'isofrequency' dimension.
    Heil P; Rajan R; Irvine DR
    Hear Res; 1992 Nov; 63(1-2):135-56. PubMed ID: 1464567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of auditory-evoked potentials in musicians reflects an influence of expertise but not selective attention.
    Baumann S; Meyer M; Jäncke L
    J Cogn Neurosci; 2008 Dec; 20(12):2238-49. PubMed ID: 18457513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex.
    König R; Sieluzycki C; Simserides C; Heil P; Scheich H
    Brain Res; 2008 Jul; 1220():102-17. PubMed ID: 18420183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency organization of delay-sensitive neurons in the auditory cortex of the FM bat, Myotis lucifugus.
    Paschal WG; Wong D
    J Neurophysiol; 1994 Jul; 72(1):366-79. PubMed ID: 7965020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters.
    Heil P; Rajan R; Irvine DR
    Hear Res; 1992 Nov; 63(1-2):108-34. PubMed ID: 1464565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil.
    Schulze H; Hess A; Ohl FW; Scheich H
    Eur J Neurosci; 2002 Mar; 15(6):1077-84. PubMed ID: 11918666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of neuronal responses to frequency-modulated tones in chinchilla auditory cortex.
    Brown TA; Harrison RV
    Brain Res; 2010 Jan; 1309():29-39. PubMed ID: 19874805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex.
    Hart HC; Palmer AR; Hall DA
    Cereb Cortex; 2003 Jul; 13(7):773-81. PubMed ID: 12816893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys.
    Bieser A
    Exp Brain Res; 1998 Sep; 122(2):139-48. PubMed ID: 9776512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.