BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 11166029)

  • 1. Adaptive reversions of a frameshift mutation in arrested Saccharomyces cerevisiae cells by simple deletions in mononucleotide repeats.
    Heidenreich E; Wintersberger U
    Mutat Res; 2001 Jan; 473(1):101-7. PubMed ID: 11166029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae.
    Heidenreich E; Wintersberger U
    Mol Gen Genet; 1998 Nov; 260(4):395-400. PubMed ID: 9870705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive mutation sequences reproduced by mismatch repair deficiency.
    Longerich S; Galloway AM; Harris RS; Wong C; Rosenberg SM
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12017-20. PubMed ID: 8618835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes.
    Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA
    Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive mutation by deletions in small mononucleotide repeats.
    Rosenberg SM; Longerich S; Gee P; Harris RS
    Science; 1994 Jul; 265(5170):405-7. PubMed ID: 8023163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells.
    Heidenreich E; Eisler H
    Mutat Res; 2004 Nov; 556(1-2):201-8. PubMed ID: 15491648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae.
    Harfe BD; Jinks-Robertson S
    Genetics; 2000 Oct; 156(2):571-8. PubMed ID: 11014807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains.
    Heidenreich E; Holzmann V; Eisler H
    DNA Repair (Amst); 2004 Apr; 3(4):395-402. PubMed ID: 15010315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells.
    Heidenreich E; Eisler H; Steinboeck F
    Mutat Res; 2006 Jan; 593(1-2):187-95. PubMed ID: 16154164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae.
    Gragg H; Harfe BD; Jinks-Robertson S
    Mol Cell Biol; 2002 Dec; 22(24):8756-62. PubMed ID: 12446792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells.
    Heidenreich E; Novotny R; Kneidinger B; Holzmann V; Wintersberger U
    EMBO J; 2003 May; 22(9):2274-83. PubMed ID: 12727893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An examination of adaptive reversion in Saccharomyces cerevisiae.
    Steele DF; Jinks-Robertson S
    Genetics; 1992 Sep; 132(1):9-21. PubMed ID: 1398066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frameshift mutagenesis: the roles of primer-template misalignment and the nonhomologous end-joining pathway in Saccharomyces cerevisiae.
    Lehner K; Mudrak SV; Minesinger BK; Jinks-Robertson S
    Genetics; 2012 Feb; 190(2):501-10. PubMed ID: 22095081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starvation for a specific amino acid induces high frequencies of rho- mutants in Saccharomyces cerevisiae.
    Heidenreich E; Wintersberger U
    Curr Genet; 1997 May; 31(5):408-13. PubMed ID: 9162112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication.
    Erdeniz N; Dudley S; Gealy R; Jinks-Robertson S; Liskay RM
    Mol Cell Biol; 2005 Nov; 25(21):9221-31. PubMed ID: 16227575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation spectrum of spontaneous frameshift revertants in yeast using double-strand gap repair.
    Plewa MJ; Kalinowski DP; Larimer FW
    Environ Mol Mutagen; 1992; 20(2):84-8. PubMed ID: 1505532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of spontaneous frameshift mutations in REV1 and rev1-1 strains of Saccharomyces cerevisiae.
    Kalinowski DP; Larimer FW; Plewa MJ
    Mutat Res; 1995 Sep; 331(1):149-59. PubMed ID: 7666862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli.
    Yoshiyama K; Higuchi K; Matsumura H; Maki H
    J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells.
    Steinboeck F; Hubmann M; Bogusch A; Dorninger P; Lengheimer T; Heidenreich E
    Mutat Res; 2010 Jun; 688(1-2):47-52. PubMed ID: 20223252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive mutations in Salmonella typhimurium phenotypic of purR super-repression.
    Yang Z; Lu Z; Wang A
    Mutat Res; 2006 Mar; 595(1-2):107-16. PubMed ID: 16414087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.