These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 11166029)
1. Adaptive reversions of a frameshift mutation in arrested Saccharomyces cerevisiae cells by simple deletions in mononucleotide repeats. Heidenreich E; Wintersberger U Mutat Res; 2001 Jan; 473(1):101-7. PubMed ID: 11166029 [TBL] [Abstract][Full Text] [Related]
2. Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae. Heidenreich E; Wintersberger U Mol Gen Genet; 1998 Nov; 260(4):395-400. PubMed ID: 9870705 [TBL] [Abstract][Full Text] [Related]
3. Adaptive mutation sequences reproduced by mismatch repair deficiency. Longerich S; Galloway AM; Harris RS; Wong C; Rosenberg SM Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12017-20. PubMed ID: 8618835 [TBL] [Abstract][Full Text] [Related]
4. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712 [TBL] [Abstract][Full Text] [Related]
5. Adaptive mutation by deletions in small mononucleotide repeats. Rosenberg SM; Longerich S; Gee P; Harris RS Science; 1994 Jul; 265(5170):405-7. PubMed ID: 8023163 [TBL] [Abstract][Full Text] [Related]
6. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Heidenreich E; Eisler H Mutat Res; 2004 Nov; 556(1-2):201-8. PubMed ID: 15491648 [TBL] [Abstract][Full Text] [Related]
7. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Harfe BD; Jinks-Robertson S Genetics; 2000 Oct; 156(2):571-8. PubMed ID: 11014807 [TBL] [Abstract][Full Text] [Related]
8. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains. Heidenreich E; Holzmann V; Eisler H DNA Repair (Amst); 2004 Apr; 3(4):395-402. PubMed ID: 15010315 [TBL] [Abstract][Full Text] [Related]
9. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells. Heidenreich E; Eisler H; Steinboeck F Mutat Res; 2006 Jan; 593(1-2):187-95. PubMed ID: 16154164 [TBL] [Abstract][Full Text] [Related]
10. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Gragg H; Harfe BD; Jinks-Robertson S Mol Cell Biol; 2002 Dec; 22(24):8756-62. PubMed ID: 12446792 [TBL] [Abstract][Full Text] [Related]
11. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. Heidenreich E; Novotny R; Kneidinger B; Holzmann V; Wintersberger U EMBO J; 2003 May; 22(9):2274-83. PubMed ID: 12727893 [TBL] [Abstract][Full Text] [Related]
12. An examination of adaptive reversion in Saccharomyces cerevisiae. Steele DF; Jinks-Robertson S Genetics; 1992 Sep; 132(1):9-21. PubMed ID: 1398066 [TBL] [Abstract][Full Text] [Related]
13. Frameshift mutagenesis: the roles of primer-template misalignment and the nonhomologous end-joining pathway in Saccharomyces cerevisiae. Lehner K; Mudrak SV; Minesinger BK; Jinks-Robertson S Genetics; 2012 Feb; 190(2):501-10. PubMed ID: 22095081 [TBL] [Abstract][Full Text] [Related]
14. Starvation for a specific amino acid induces high frequencies of rho- mutants in Saccharomyces cerevisiae. Heidenreich E; Wintersberger U Curr Genet; 1997 May; 31(5):408-13. PubMed ID: 9162112 [TBL] [Abstract][Full Text] [Related]
15. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication. Erdeniz N; Dudley S; Gealy R; Jinks-Robertson S; Liskay RM Mol Cell Biol; 2005 Nov; 25(21):9221-31. PubMed ID: 16227575 [TBL] [Abstract][Full Text] [Related]
16. Mutation spectrum of spontaneous frameshift revertants in yeast using double-strand gap repair. Plewa MJ; Kalinowski DP; Larimer FW Environ Mol Mutagen; 1992; 20(2):84-8. PubMed ID: 1505532 [TBL] [Abstract][Full Text] [Related]
17. Analysis of spontaneous frameshift mutations in REV1 and rev1-1 strains of Saccharomyces cerevisiae. Kalinowski DP; Larimer FW; Plewa MJ Mutat Res; 1995 Sep; 331(1):149-59. PubMed ID: 7666862 [TBL] [Abstract][Full Text] [Related]
18. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli. Yoshiyama K; Higuchi K; Matsumura H; Maki H J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335 [TBL] [Abstract][Full Text] [Related]
19. The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells. Steinboeck F; Hubmann M; Bogusch A; Dorninger P; Lengheimer T; Heidenreich E Mutat Res; 2010 Jun; 688(1-2):47-52. PubMed ID: 20223252 [TBL] [Abstract][Full Text] [Related]
20. Adaptive mutations in Salmonella typhimurium phenotypic of purR super-repression. Yang Z; Lu Z; Wang A Mutat Res; 2006 Mar; 595(1-2):107-16. PubMed ID: 16414087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]