BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 11166293)

  • 1. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery.
    Fujimoto S; Asano T; Sakai M; Sakurai K; Takagi D; Yoshimoto N; Itoh T
    Eur J Pharmacol; 2001 Feb; 412(3):291-300. PubMed ID: 11166293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasorelaxant effect of olprinone, an inhibitor of phosphodiesterase 3, on mesenteric small artery and vein of rabbits.
    Fujimoto S; Ohashi M; Hiramoto A; Inoue Y; Nagai K; Shiokawa H; Itoh T
    Eur J Pharmacol; 1998 Jul; 353(2-3):239-46. PubMed ID: 9726653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of caffeine- and Ins(1,4,5)P3-induced contractions to oxidants in permeabilized vascular smooth muscle.
    Wada S; Okabe E
    Eur J Pharmacol; 1997 Feb; 320(1):51-9. PubMed ID: 9049602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery.
    Itoh T; Kajikuri J; Hattori T; Kusama N; Yamamoto T
    Br J Pharmacol; 2003 May; 139(2):444-56. PubMed ID: 12770950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the hydrogen peroxide-induced, endothelium-independent relaxation of the norepinephrine-contraction in guinea-pig aorta.
    Fujimoto S; Mori M; Tsushima H
    Eur J Pharmacol; 2003 Jan; 459(1):65-73. PubMed ID: 12505535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery.
    Seager JM; Murphy TV; Garland CJ
    Br J Pharmacol; 1994 Feb; 111(2):525-32. PubMed ID: 8004397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K(+) channel blockers and cytochrome P450 inhibitors on acetylcholine-induced, endothelium-dependent relaxation in rabbit mesenteric artery.
    Fujimoto S; Ikegami Y; Isaka M; Kato T; Nishimura K; Itoh T
    Eur J Pharmacol; 1999 Nov; 384(1):7-15. PubMed ID: 10611413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery.
    Mizukawa H; Okabe E
    Br J Pharmacol; 1997 May; 121(1):63-70. PubMed ID: 9146888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries.
    Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S
    Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of propofol on norepinephrine-induced increases in [Ca2+]i and force in smooth muscle of the rabbit mesenteric resistance artery.
    Imura N; Shiraishi Y; Katsuya H; Itoh T
    Anesthesiology; 1998 Jun; 88(6):1566-78. PubMed ID: 9637651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery.
    Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T
    Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen.
    Magnon M; Durand I; Cavero I
    J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HNS-32, a novel azulene-1-carboxamidine derivative, inhibits nifedipine-sensitive and -insensitive contraction of the isolated rabbit aorta.
    Tanaka Y; Mitani A; Igarashi T; Someya S; Otsuka K; Imai T; Yamaki F; Tanaka H; Saitoh M; Nakazawa T; Noguchi K; Hashimoto K; Shigenobu K
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Mar; 363(3):344-52. PubMed ID: 11284450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery.
    Gao YJ; Hirota S; Zhang DW; Janssen LJ; Lee RM
    Br J Pharmacol; 2003 Mar; 138(6):1085-92. PubMed ID: 12684264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta.
    Weir CJ; Gibson IF; Martin W
    Br J Pharmacol; 1991 Jan; 102(1):162-6. PubMed ID: 1646055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery.
    Ozkan MH; Uma S
    Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cromakalim inhibits contractions of the rat isolated mesenteric bed induced by noradrenaline but not caffeine in Ca(2+)-free medium: evidence for interference with receptor-mediated Ca2+ mobilization.
    Quast U; Baumlin Y
    Eur J Pharmacol; 1991 Aug; 200(2-3):239-49. PubMed ID: 1782988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses of rat aorta and mesenteric artery to norepinephrine and serotonin in vitro.
    Adegunloye BI; Sofola OA
    Pharmacology; 1997 Jul; 55(1):25-31. PubMed ID: 9309798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasorelaxant effect of mexiletine in mesenteric resistance arteries of rats.
    Dohi Y; Kojima M; Sato K
    Br J Pharmacol; 1994 Mar; 111(3):673-80. PubMed ID: 8019745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.