These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 11166293)
1. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Fujimoto S; Asano T; Sakai M; Sakurai K; Takagi D; Yoshimoto N; Itoh T Eur J Pharmacol; 2001 Feb; 412(3):291-300. PubMed ID: 11166293 [TBL] [Abstract][Full Text] [Related]
2. Vasorelaxant effect of olprinone, an inhibitor of phosphodiesterase 3, on mesenteric small artery and vein of rabbits. Fujimoto S; Ohashi M; Hiramoto A; Inoue Y; Nagai K; Shiokawa H; Itoh T Eur J Pharmacol; 1998 Jul; 353(2-3):239-46. PubMed ID: 9726653 [TBL] [Abstract][Full Text] [Related]
3. Susceptibility of caffeine- and Ins(1,4,5)P3-induced contractions to oxidants in permeabilized vascular smooth muscle. Wada S; Okabe E Eur J Pharmacol; 1997 Feb; 320(1):51-9. PubMed ID: 9049602 [TBL] [Abstract][Full Text] [Related]
4. Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery. Itoh T; Kajikuri J; Hattori T; Kusama N; Yamamoto T Br J Pharmacol; 2003 May; 139(2):444-56. PubMed ID: 12770950 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms underlying the hydrogen peroxide-induced, endothelium-independent relaxation of the norepinephrine-contraction in guinea-pig aorta. Fujimoto S; Mori M; Tsushima H Eur J Pharmacol; 2003 Jan; 459(1):65-73. PubMed ID: 12505535 [TBL] [Abstract][Full Text] [Related]
6. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery. Seager JM; Murphy TV; Garland CJ Br J Pharmacol; 1994 Feb; 111(2):525-32. PubMed ID: 8004397 [TBL] [Abstract][Full Text] [Related]
7. K(+) channel blockers and cytochrome P450 inhibitors on acetylcholine-induced, endothelium-dependent relaxation in rabbit mesenteric artery. Fujimoto S; Ikegami Y; Isaka M; Kato T; Nishimura K; Itoh T Eur J Pharmacol; 1999 Nov; 384(1):7-15. PubMed ID: 10611413 [TBL] [Abstract][Full Text] [Related]
8. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. Mizukawa H; Okabe E Br J Pharmacol; 1997 May; 121(1):63-70. PubMed ID: 9146888 [TBL] [Abstract][Full Text] [Related]
9. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
10. Effect of propofol on norepinephrine-induced increases in [Ca2+]i and force in smooth muscle of the rabbit mesenteric resistance artery. Imura N; Shiraishi Y; Katsuya H; Itoh T Anesthesiology; 1998 Jun; 88(6):1566-78. PubMed ID: 9637651 [TBL] [Abstract][Full Text] [Related]
11. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery. Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252 [TBL] [Abstract][Full Text] [Related]
12. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. Magnon M; Durand I; Cavero I J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056 [TBL] [Abstract][Full Text] [Related]
13. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels. Fujimoto S; Itoh T Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951 [TBL] [Abstract][Full Text] [Related]
14. HNS-32, a novel azulene-1-carboxamidine derivative, inhibits nifedipine-sensitive and -insensitive contraction of the isolated rabbit aorta. Tanaka Y; Mitani A; Igarashi T; Someya S; Otsuka K; Imai T; Yamaki F; Tanaka H; Saitoh M; Nakazawa T; Noguchi K; Hashimoto K; Shigenobu K Naunyn Schmiedebergs Arch Pharmacol; 2001 Mar; 363(3):344-52. PubMed ID: 11284450 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Gao YJ; Hirota S; Zhang DW; Janssen LJ; Lee RM Br J Pharmacol; 2003 Mar; 138(6):1085-92. PubMed ID: 12684264 [TBL] [Abstract][Full Text] [Related]
16. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta. Weir CJ; Gibson IF; Martin W Br J Pharmacol; 1991 Jan; 102(1):162-6. PubMed ID: 1646055 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery. Ozkan MH; Uma S Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203 [TBL] [Abstract][Full Text] [Related]
18. Cromakalim inhibits contractions of the rat isolated mesenteric bed induced by noradrenaline but not caffeine in Ca(2+)-free medium: evidence for interference with receptor-mediated Ca2+ mobilization. Quast U; Baumlin Y Eur J Pharmacol; 1991 Aug; 200(2-3):239-49. PubMed ID: 1782988 [TBL] [Abstract][Full Text] [Related]
19. Differential responses of rat aorta and mesenteric artery to norepinephrine and serotonin in vitro. Adegunloye BI; Sofola OA Pharmacology; 1997 Jul; 55(1):25-31. PubMed ID: 9309798 [TBL] [Abstract][Full Text] [Related]
20. Vasorelaxant effect of mexiletine in mesenteric resistance arteries of rats. Dohi Y; Kojima M; Sato K Br J Pharmacol; 1994 Mar; 111(3):673-80. PubMed ID: 8019745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]