These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11166432)

  • 1. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth.
    Ono K; Hibino T; Kohinata T; Suzuki S; Tanaka Y; Nakamura T; Takabe T; Takabe T
    Plant Sci; 2001 Feb; 160(3):455-461. PubMed ID: 11166432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions.
    Hibino T; Kaku N; Yoshikawa H; Takabe T; Takabe T
    Plant Mol Biol; 1999 Jun; 40(3):409-18. PubMed ID: 10437825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica.
    Lee BH; Hibino T; Jo J; Viale AM; Takabe T
    Plant Mol Biol; 1997 Dec; 35(6):763-75. PubMed ID: 9426597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional differences between cyanobacterial DnaK1 chaperones from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus expressed in Escherichia coli.
    Blanco-Rivero MC; Takabe T; Viale AM
    Curr Microbiol; 2005 Sep; 51(3):164-70. PubMed ID: 16059771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simazine Enhances Dark Fermentative H
    Pansook S; Incharoensakdi A; Phunpruch S
    Front Bioeng Biotechnol; 2022; 10():904101. PubMed ID: 35910023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.
    Laloknam S; Tanaka K; Buaboocha T; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Takabe T
    Appl Environ Microbiol; 2006 Sep; 72(9):6018-26. PubMed ID: 16957224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of alkanes for salt tolerance of Cyanobacteria: characterization of alkane synthesis genes from salt-sensitive Synechococcus elongatus PCC7942 and salt-tolerant Aphanothece halophytica.
    Yamamori T; Kageyama H; Tanaka Y; Takabe T
    Lett Appl Microbiol; 2018 Sep; 67(3):299-305. PubMed ID: 30039571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Photosystem II Inhibitors CCCP and DCMU on Hydrogen Production by the Unicellular Halotolerant Cyanobacterium
    Pansook S; Incharoensakdi A; Phunpruch S
    ScientificWorldJournal; 2019; 2019():1030236. PubMed ID: 31346323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH.
    Wutipraditkul N; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Nakamura T; Shikata M; Takabe T; Takabe T
    Appl Environ Microbiol; 2005 Aug; 71(8):4176-84. PubMed ID: 16085800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO(2) Fixation Rate and RuBisCO Content Increase in the Halotolerant Cyanobacterium, Aphanothece halophytica, Grown in High Salinities.
    Takabe T; Incharoensakdi A; Arakawa K; Yokota S
    Plant Physiol; 1988 Dec; 88(4):1120-4. PubMed ID: 16666431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functions of a cucumber phospholipase D alpha gene (CsPLDĪ±) in growth and tolerance to hyperosmotic stress.
    Li S; Huang M; Di Q; Ji T; Wang X; Wei M; Shi Q; Li Y; Gong B; Yang F
    Plant Physiol Biochem; 2015 Dec; 97():175-86. PubMed ID: 26476791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark fermentative hydrogen production and transcriptional analysis of genes involved in the unicellular halotolerant cyanobacterium
    Chinchusak N; Incharoensakdi A; Phunpruch S
    Front Bioeng Biotechnol; 2022; 10():1028151. PubMed ID: 36686224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.
    Bualuang A; Incharoensakdi A
    World J Microbiol Biotechnol; 2015 Feb; 31(2):379-84. PubMed ID: 25536900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.
    Waditee-Sirisattha R; Kageyama H; Fukaya M; Rai V; Takabe T
    FEMS Microbiol Lett; 2015 Dec; 362(23):fnv198. PubMed ID: 26474598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent uptake of glutamate by novel ApGltS enhanced growth under salt stress of halotolerant cyanobacterium Aphanothece halophytica.
    Boonburapong B; Laloknam S; Yamada N; Incharoensakdi A; Takabe T
    Biosci Biotechnol Biochem; 2012; 76(9):1702-7. PubMed ID: 22972333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing tolerance of conifer seeds and germinants.
    Hawkins BJ; Guest HJ; Kolotelo D
    Tree Physiol; 2003 Dec; 23(18):1237-46. PubMed ID: 14652223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower.
    Wen B
    PLoS One; 2015; 10(10):e0141567. PubMed ID: 26509675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior.
    Onelli E; Moscatelli A; Gagliardi A; Zaninelli M; Bini L; Baldi A; Caccianiga M; Reggi S; Rossi L
    PLoS One; 2017; 12(12):e0187929. PubMed ID: 29216220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium.
    Kageyama H; Tripathi K; Rai AK; Cha-Um S; Waditee-Sirisattha R; Takabe T
    Appl Environ Microbiol; 2011 Aug; 77(15):5178-83. PubMed ID: 21666012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.
    Rodrigues SM; Andrade MO; Gomes AP; Damatta FM; Baracat-Pereira MC; Fontes EP
    J Exp Bot; 2006; 57(9):1909-18. PubMed ID: 16595581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.