These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11166566)

  • 41. DNA building blocks: keeping control of manufacture.
    Hofer A; Crona M; Logan DT; Sjöberg BM
    Crit Rev Biochem Mol Biol; 2012; 47(1):50-63. PubMed ID: 22050358
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?
    Stubbe J; Nocera DG; Yee CS; Chang MC
    Chem Rev; 2003 Jun; 103(6):2167-201. PubMed ID: 12797828
    [No Abstract]   [Full Text] [Related]  

  • 43. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors.
    Uppsten M; Färnegårdh M; Jordan A; Eliasson R; Eklund H; Uhlin U
    J Mol Biol; 2003 Jun; 330(1):87-97. PubMed ID: 12818204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive phylogenetic analysis of the ribonucleotide reductase family reveals an ancestral clade.
    Burnim AA; Spence MA; Xu D; Jackson CJ; Ando N
    Elife; 2022 Sep; 11():. PubMed ID: 36047668
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selenocysteine Substitution in a Class I Ribonucleotide Reductase.
    Greene BL; Stubbe J; Nocera DG
    Biochemistry; 2019 Dec; 58(50):5074-5084. PubMed ID: 31774661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction.
    Booker S; Licht S; Broderick J; Stubbe J
    Biochemistry; 1994 Oct; 33(42):12676-85. PubMed ID: 7918494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation.
    Licht SS; Booker S; Stubbe J
    Biochemistry; 1999 Jan; 38(4):1221-33. PubMed ID: 9930982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase.
    Olshansky L; Pizano AA; Wei Y; Stubbe J; Nocera DG
    J Am Chem Soc; 2014 Nov; 136(46):16210-6. PubMed ID: 25353063
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ribonucleotide reductases.
    Stubbe J
    Adv Enzymol Relat Areas Mol Biol; 1990; 63():349-419. PubMed ID: 2407066
    [No Abstract]   [Full Text] [Related]  

  • 50. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound.
    Brignole EJ; Tsai KL; Chittuluru J; Li H; Aye Y; Penczek PA; Stubbe J; Drennan CL; Asturias F
    Elife; 2018 Feb; 7():. PubMed ID: 29460780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and biological activity of a bivalent nucleotide inhibitor of ribonucleotide reductase.
    Wu X; Cooperman BS
    Bioorg Med Chem Lett; 2000 Oct; 10(20):2387-9. PubMed ID: 11055362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site.
    Aurelius O; Johansson R; Bågenholm V; Lundin D; Tholander F; Balhuizen A; Beck T; Sahlin M; Sjöberg BM; Mulliez E; Logan DT
    PLoS One; 2015; 10(7):e0128199. PubMed ID: 26147435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comprehensive model for the allosteric regulation of mammalian ribonucleotide reductase. Functional consequences of ATP- and dATP-induced oligomerization of the large subunit.
    Kashlan OB; Scott CP; Lear JD; Cooperman BS
    Biochemistry; 2002 Jan; 41(2):462-74. PubMed ID: 11781084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase.
    Denysenkov VP; Prisner TF; Stubbe J; Bennati M
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13386-90. PubMed ID: 16938868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The function of adenosylcobalamin in the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Lawrence CC; Stubbe J
    Curr Opin Chem Biol; 1998 Oct; 2(5):650-5. PubMed ID: 9818192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank.
    Lundin D; Torrents E; Poole AM; Sjöberg BM
    BMC Genomics; 2009 Dec; 10():589. PubMed ID: 19995434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The ATP-cone: an evolutionarily mobile, ATP-binding regulatory domain.
    Aravind L; Wolf YI; Koonin EV
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):191-4. PubMed ID: 10939243
    [No Abstract]   [Full Text] [Related]  

  • 58. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.
    Johansson R; Jonna VR; Kumar R; Nayeri N; Lundin D; Sjöberg BM; Hofer A; Logan DT
    Structure; 2016 Jun; 24(6):906-17. PubMed ID: 27133024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyruvate formate lyase is structurally homologous to type I ribonucleotide reductase.
    Leppänen VM; Merckel MC; Ollis DL; Wong KK; Kozarich JW; Goldman A
    Structure; 1999 Jul; 7(7):733-44. PubMed ID: 10425676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Why multiple small subunits (Y2 and Y4) for yeast ribonucleotide reductase? Toward understanding the role of Y4.
    Ge J; Perlstein DL; Nguyen HH; Bar G; Griffin RG; Stubbe J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10067-72. PubMed ID: 11526232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.