These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11166934)

  • 21. Mesopic luminance assessed with minimum motion photometry.
    Raphael S; MacLeod DI
    J Vis; 2011 Aug; 11(9):. PubMed ID: 21868482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina.
    Pang JJ; Gao F; Wu SM
    J Physiol; 2004 Aug; 558(Pt 3):897-912. PubMed ID: 15181169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of variable temperatures, darkness and light on the secretion of melatonin by pineal explants in the gecko, Christinus marmoratus.
    Moyer RW; Firth BT; Kennaway DJ
    Brain Res; 1997 Feb; 747(2):230-5. PubMed ID: 9045997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure.
    Giménez MC; Stefani O; Cajochen C; Lang D; Deuring G; Schlangen LJM
    J Pineal Res; 2022 Mar; 72(2):e12786. PubMed ID: 34981572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative impact of melatonin ingestion on the photopic electroretinogram of dogs.
    Lavoie J; Rosolen SG; Chalier C; Hébert M
    Neurosci Lett; 2013 May; 543():78-83. PubMed ID: 23562505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light suppression of nocturnal pineal and plasma melatonin in rats depends on wavelength and time of day.
    Honma S; Kanematsu N; Katsuno Y; Honma K
    Neurosci Lett; 1992 Dec; 147(2):201-4. PubMed ID: 1491808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor.
    Brainard GC; Hanifin JP; Greeson JM; Byrne B; Glickman G; Gerner E; Rollag MD
    J Neurosci; 2001 Aug; 21(16):6405-12. PubMed ID: 11487664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro photic entrainment of the circadian rhythm in melatonin release from the pineal organ of a teleost, ayu (Plecoglossus altivelis) in flow-through culture.
    Iigo M; Mizusawa K; Yokosuka M; Hara M; Ohtani-Kaneko R; Tabata M; Aida K; Hirata K
    Brain Res; 2003 Aug; 982(1):131-5. PubMed ID: 12915248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.
    Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S
    Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alcohol Intoxication Impairs Mesopic Rod and Cone Temporal Processing in Social Drinkers.
    Zhuang X; Kang P; King A; Cao D
    Alcohol Clin Exp Res; 2015 Sep; 39(9):1842-9. PubMed ID: 26247196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rods progressively escape saturation to drive visual responses in daylight conditions.
    Tikidji-Hamburyan A; Reinhard K; Storchi R; Dietter J; Seitter H; Davis KE; Idrees S; Mutter M; Walmsley L; Bedford RA; Ueffing M; Ala-Laurila P; Brown TM; Lucas RJ; Münch TA
    Nat Commun; 2017 Nov; 8(1):1813. PubMed ID: 29180667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binocular rivalry and fusion under scotopic luminances.
    O'Shea RP; Blake R; Wolfe JM
    Perception; 1994; 23(7):771-84. PubMed ID: 7845769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
    Sakurai K; Young JE; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6793-800. PubMed ID: 21474765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light.
    Lockley SW; Brainard GC; Czeisler CA
    J Clin Endocrinol Metab; 2003 Sep; 88(9):4502-5. PubMed ID: 12970330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlating retinal function with melatonin secretion in subjects with an early or late circadian phase.
    Rufiange M; Dumont M; Lachapelle P
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2491-9. PubMed ID: 12091455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster.
    Nelson DE; Takahashi JS
    Brain Res; 1991 Jul; 554(1-2):272-7. PubMed ID: 1933309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinally perceived light can entrain the pineal melatonin rhythm in Japanese quail.
    Barrett RK; Underwood H
    Brain Res; 1991 Nov; 563(1-2):87-93. PubMed ID: 1786552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Regulation mechanism of melatonin rhythm in the pineal gland by light: experimental studies by in vivo microdialysis].
    Kanematsu N
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):46-64. PubMed ID: 8119657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.