BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11166987)

  • 1. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action.
    Aronson AI; Shai Y
    FEMS Microbiol Lett; 2001 Feb; 195(1):1-8. PubMed ID: 11166987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis.
    Aronson A
    Cell Mol Life Sci; 2002 Mar; 59(3):417-25. PubMed ID: 11964120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the packaging of Bacillus thuringiensis delta-endotoxins into inclusions.
    Chang L; Grant R; Aronson A
    Appl Environ Microbiol; 2001 Nov; 67(11):5032-6. PubMed ID: 11679322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.
    Bravo A; Gill SS; Soberón M
    Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histopathological and ultrastructural effects of delta-endotoxins of Bacillus thuringiensis serovar israelensis in the midgut of Simulium pertinax larvae (Diptera, Simuliidae).
    Cavados CF; Majerowicz S; Chaves JQ; Araújo-Coutinho CJ; Rabinovitch L
    Mem Inst Oswaldo Cruz; 2004 Aug; 99(5):493-8. PubMed ID: 15543412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolysis, histopathological effects, and immunohistopathological localization of delta-endotoxins of Bacillus thuringiensis subsp. kurstaki in the midgut of lepidopteran olive tree pathogenic insect Prays oleae.
    Rouis S; Chakroun M; Saadaoui I; Jaoua S
    Mol Biotechnol; 2007 Feb; 35(2):141-8. PubMed ID: 17435280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis.
    Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A
    Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor.
    Leetachewa S; Khomkhum N; Sakdee S; Wang P; Moonsom S
    Parasit Vectors; 2018 Sep; 11(1):515. PubMed ID: 30236155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus thuringiensis: from biodiversity to biotechnology.
    Prieto-Samsónov DL; Vázquez-Padrón RI; Ayra-Pardo C; González-Cabrera J; de la Riva GA
    J Ind Microbiol Biotechnol; 1997 Sep; 19(3):202-19. PubMed ID: 9418060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus thuringiensis insecticidal proteins: molecular mode of action.
    Rajamohan F; Lee MK; Dean DH
    Prog Nucleic Acid Res Mol Biol; 1998; 60():1-27. PubMed ID: 9594569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review.
    Vachon V; Laprade R; Schwartz JL
    J Invertebr Pathol; 2012 Sep; 111(1):1-12. PubMed ID: 22617276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis.
    Soberón M; Portugal L; Garcia-Gómez BI; Sánchez J; Onofre J; Gómez I; Pacheco S; Bravo A
    Insect Biochem Mol Biol; 2018 Feb; 93():66-78. PubMed ID: 29269111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of receptors in Bacillus thuringiensis crystal toxin activity.
    Pigott CR; Ellar DJ
    Microbiol Mol Biol Rev; 2007 Jun; 71(2):255-81. PubMed ID: 17554045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes.
    Herrero S; Gechev T; Bakker PL; Moar WJ; de Maagd RA
    BMC Genomics; 2005 Jun; 6():96. PubMed ID: 15978131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system.
    Baum JA; Kakefuda M; Gawron-Burke C
    Appl Environ Microbiol; 1996 Dec; 62(12):4367-73. PubMed ID: 8953709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors.
    Schwartz JL; Lu YJ; Söhnlein P; Brousseau R; Laprade R; Masson L; Adang MJ
    FEBS Lett; 1997 Jul; 412(2):270-6. PubMed ID: 9256233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle.
    Naimov S; Weemen-Hendriks M; Dukiandjiev S; de Maagd RA
    Appl Environ Microbiol; 2001 Nov; 67(11):5328-30. PubMed ID: 11679364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity spectra of Bacillus thuringiensis delta-endotoxins against eight insect cell lines.
    Gringorten JL; Sohi SS; Masson L
    In Vitro Cell Dev Biol Anim; 1999 May; 35(5):299-303. PubMed ID: 10475277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.