These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 11167305)

  • 1. A model of fluid and solute exchange in the human: validation and implications.
    Bert JL; Gyenge CC; Bowen BD; Reed RK; Lund T
    Acta Physiol Scand; 2000 Nov; 170(3):201-9. PubMed ID: 11167305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of fluid and solutes in the body I. Formulation of a mathematical model.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Am J Physiol; 1999 Sep; 277(3):H1215-27. PubMed ID: 10484444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of fluid and solutes in the body II. Model validation and implications.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Am J Physiol; 1999 Sep; 277(3):H1228-40. PubMed ID: 10484445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions.
    Fernandez de Canete J; Del Saz Huang P
    Comput Biol Med; 2010 Sep; 40(9):740-50. PubMed ID: 20728081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary model of fluid and solute distribution and transport during hemorrhage.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Ann Biomed Eng; 2003; 31(7):823-39. PubMed ID: 12971615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of renal elimination of fluid and small ions during hyper- and hypovolemic conditions.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Acta Anaesthesiol Scand; 2003 Feb; 47(2):122-37. PubMed ID: 12631040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular exchange and interstitial volume regulation in the rat: implications of the model.
    Reed RK; Bowen BD; Bert JL
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H2081-91. PubMed ID: 2603991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume kinetic analysis of fluid shifts accompanying intravenous infusions of glucose solution.
    Hahn RG; Edsberg L; Sjöstrand F
    Cell Biochem Biophys; 2003; 39(3):211-22. PubMed ID: 14716077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of whole-body capillary transport parameters from osmotic transient data.
    Wolf MB
    Am J Physiol; 1982 Mar; 242(3):R227-36. PubMed ID: 7065216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of fluid, erythrocyte, and solute transport in the lung.
    Roselli RJ; Tack G; Harris TR
    Ann Biomed Eng; 1997; 25(1):46-61. PubMed ID: 9124737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypertonic solutions in the treatment of hypovolemic shock: a prospective, randomized study in patients admitted to the emergency room.
    Younes RN; Aun F; Accioly CQ; Casale LP; Szajnbok I; Birolini D
    Surgery; 1992 Apr; 111(4):380-5. PubMed ID: 1373007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of hypertonic saline/dextran versus hypertonic saline/hetastarch for resuscitation of hypovolemia.
    Kramer GC; Walsh JC; Perron PR; Gunther RA; Holcroft JW
    Braz J Med Biol Res; 1989; 22(2):279-82. PubMed ID: 2477094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histophysiological effects of fluid resuscitation on heart, lung and brain tissues in rats with hypovolemia.
    Ekerbicer N; Inan S; Tarakci F; Cilaker S; Ozbek M
    Acta Histochem; 2006; 108(5):373-83. PubMed ID: 16762404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid and crystalloid fluid resuscitation.
    Falk JL; Rackow EC; Weil MH
    Acute Care; 1983-1984; 10(2):59-94. PubMed ID: 6085668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Simulation of transcapillary exchange of liquids].
    Duvelleroy M; Duruble M
    Phlebologie; 1989; 42(1):93-9. PubMed ID: 2755986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular exchange and interstitial volume regulation in the rat: model validation.
    Bert JL; Bowen BD; Reed RK
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H384-99. PubMed ID: 3344829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of human microvascular exchange: parameter estimation based on normals and nephrotics.
    Chapple C; Bowen BD; Reed RK; Xie SL; Bert JL
    Comput Methods Programs Biomed; 1993 Sep; 41(1):33-54. PubMed ID: 8275681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravenous hypertonic NaCl acts via cerebral sodium-sensitive and angiotensinergic mechanisms to improve cardiac function in haemorrhaged conscious sheep.
    Frithiof R; Eriksson S; Bayard F; Svensson T; Rundgren M
    J Physiol; 2007 Sep; 583(Pt 3):1129-43. PubMed ID: 17640936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvascular exchange during burn injury: IV. Fluid resuscitation model.
    Bert JL; Bowen BD; Reed RK; Onarheim H
    Circ Shock; 1991 Jul; 34(3):285-97. PubMed ID: 1884433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.