These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 11167683)

  • 1. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo.
    Jimbow K; Chen H; Park JS; Thomas PD
    Br J Dermatol; 2001 Jan; 144(1):55-65. PubMed ID: 11167683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological role of tyrosinase related protein and its biosynthesis and transport from TGN to stage I melanosome, late endosome, through gene transfection study.
    Jimbow K; Gomez PF; Toyofuku K; Chang D; Miura S; Tsujiya H; Park JS
    Pigment Cell Res; 1997 Aug; 10(4):206-13. PubMed ID: 9263327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo.
    Manga P; Sheyn D; Yang F; Sarangarajan R; Boissy RE
    Am J Pathol; 2006 Nov; 169(5):1652-62. PubMed ID: 17071589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional regulation of tyrosinase and LAMP gene family of melanogenesis and cell death in immortal murine melanocytes after repeated exposure to ultraviolet B.
    Ota A; Park JS; Jimbow K
    Br J Dermatol; 1998 Aug; 139(2):207-15. PubMed ID: 9767233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian tyrosinase-related protein-1 is recognized by autoantibodies from vitiliginous Smyth chickens. An avian model for human vitiligo.
    Austin LM; Boissy RE
    Am J Pathol; 1995 Jun; 146(6):1529-41. PubMed ID: 7778691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo.
    Kim JY; Lee EJ; Seo J; Oh SH
    Br J Dermatol; 2017 Jun; 176(6):1558-1568. PubMed ID: 27787879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated mRNA and protein expression of human LAMP-1 in induction of melanogenesis after UV-B exposure and co-transfection of human tyrosinase and TRP-1 cDNAs.
    Jimbow K; Luo D; Chen H; Hara H; Lee MH
    Pigment Cell Res; 1994 Oct; 7(5):311-9. PubMed ID: 7886004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotransfection of genes encoding human tyrosinase and tyrosinase-related protein-1 prevents melanocyte death and enhances melanin pigmentation and gene expression of Lamp-1.
    Luo D; Chen H; Jimbow K
    Exp Cell Res; 1994 Jul; 213(1):231-41. PubMed ID: 8020595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.
    Wagner RY; Luciani F; Cario-André M; Rubod A; Petit V; Benzekri L; Ezzedine K; Lepreux S; Steingrimsson E; Taieb A; Gauthier Y; Larue L; Delmas V
    J Invest Dermatol; 2015 Jul; 135(7):1810-1819. PubMed ID: 25634357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and the downstream effector, MITF-M.
    Kitamura R; Tsukamoto K; Harada K; Shimizu A; Shimada S; Kobayashi T; Imokawa G
    J Pathol; 2004 Apr; 202(4):463-75. PubMed ID: 15095274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular control of melanogenesis in malignant melanoma: functional assessment of tyrosinase and lamp gene families by UV exposure and gene co-transfection, and cloning of a cDNA encoding calnexin, a possible melanogenesis "chaperone".
    Jimbow K; Hara H; Vinayagamoorthy T; Luo D; Dakour J; Yamada K; Dixon W; Chen H
    J Dermatol; 1994 Nov; 21(11):894-906. PubMed ID: 7531726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the etiology of contact/occupational vitiligo.
    Boissy RE; Manga P
    Pigment Cell Res; 2004 Jun; 17(3):208-14. PubMed ID: 15140065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratinocytes suppress TRP-1 expression and reduce cell number of co-cultured melanocytes - implications for grafting of patients with vitiligo.
    Phillips J; Gawkrodger DJ; Caddy CM; Hedley S; Dawson RA; Smith-Thomas L; Freedlander E; Mac Neil S
    Pigment Cell Res; 2001 Apr; 14(2):116-25. PubMed ID: 11310791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.
    Goldstein NB; Koster MI; Hoaglin LG; Spoelstra NS; Kechris KJ; Robinson SE; Robinson WA; Roop DR; Norris DA; Birlea SA
    J Invest Dermatol; 2015 Aug; 135(8):2068-2076. PubMed ID: 25822579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo.
    Elassiuty YE; Klarquist J; Speiser J; Yousef RM; El Refaee AA; Hunter NS; Shaker OG; Gundeti M; Nieuweboer-Krobotova L; Le Poole IC
    Exp Dermatol; 2011 Jun; 20(6):496-501. PubMed ID: 21426408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo.
    Shi Q; Zhang W; Guo S; Jian Z; Li S; Li K; Ge R; Dai W; Wang G; Gao T; Li C
    Cell Death Differ; 2016 Mar; 23(3):496-508. PubMed ID: 26315342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo.
    Yi X; Guo W; Shi Q; Yang Y; Zhang W; Chen X; Kang P; Chen J; Cui T; Ma J; Wang H; Guo S; Chang Y; Liu L; Jian Z; Wang L; Xiao Q; Li S; Gao T; Li C
    Theranostics; 2019; 9(6):1614-1633. PubMed ID: 31037127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo.
    Zhou Z; Li CY; Li K; Wang T; Zhang B; Gao TW
    Br J Dermatol; 2009 Sep; 161(3):504-9. PubMed ID: 19558554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis.
    Sastry KS; Naeem H; Mokrab Y; Chouchane AI
    Oxid Med Cell Longev; 2019; 2019():2841814. PubMed ID: 31871544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulated autophagy increased melanocyte sensitivity to H
    He Y; Li S; Zhang W; Dai W; Cui T; Wang G; Gao T; Li C
    Sci Rep; 2017 Feb; 7():42394. PubMed ID: 28186139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.