These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 11168225)
1. Effect of microgrooved poly-l-lactic (PLA) surfaces on proliferation, cytoskeletal organization, and mineralized matrix formation of rat bone marrow cells. Matsuzaka K; Walboomers F; de Ruijter A; Jansen JA Clin Oral Implants Res; 2000 Aug; 11(4):325-33. PubMed ID: 11168225 [TBL] [Abstract][Full Text] [Related]
2. The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Matsuzaka K; Walboomers XF; de Ruijter JE; Jansen JA Biomaterials; 1999 Jul; 20(14):1293-301. PubMed ID: 10403047 [TBL] [Abstract][Full Text] [Related]
3. Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration. Takeuchi N; Machigashira M; Yamashita D; Shirakata Y; Kasuga T; Noguchi K; Ban S Dent Mater J; 2011; 30(5):730-8. PubMed ID: 21946495 [TBL] [Abstract][Full Text] [Related]
4. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Wang YW; Wu Q; Chen GQ Biomaterials; 2004 Feb; 25(4):669-75. PubMed ID: 14607505 [TBL] [Abstract][Full Text] [Related]
5. The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Matsuzaka K; Walboomers XF; Yoshinari M; Inoue T; Jansen JA Biomaterials; 2003 Jul; 24(16):2711-9. PubMed ID: 12711517 [TBL] [Abstract][Full Text] [Related]
6. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro. Hamilton DW; Wong KS; Brunette DM Calcif Tissue Int; 2006 May; 78(5):314-25. PubMed ID: 16604286 [TBL] [Abstract][Full Text] [Related]
7. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity]. Zhang Y; Li B; Li J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459 [TBL] [Abstract][Full Text] [Related]
8. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. Hu Y; Winn SR; Krajbich I; Hollinger JO J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573 [TBL] [Abstract][Full Text] [Related]
9. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. Takebe J; Itoh S; Okada J; Ishibashi K J Biomed Mater Res; 2000 Sep; 51(3):398-407. PubMed ID: 10880082 [TBL] [Abstract][Full Text] [Related]
10. Response of rat bone marrow cells to differently roughened titanium discs. Castellani R; de Ruijter A; Renggli H; Jansen J Clin Oral Implants Res; 1999 Oct; 10(5):369-78. PubMed ID: 10551062 [TBL] [Abstract][Full Text] [Related]
11. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Ishaug SL; Crane GM; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG J Biomed Mater Res; 1997 Jul; 36(1):17-28. PubMed ID: 9212385 [TBL] [Abstract][Full Text] [Related]
12. In situ forming lactic acid based orthopaedic biomaterials: influence of oligomer chemistry on osteoblast attachment and function. Burdick JA; Mason MN; Anseth KS J Biomater Sci Polym Ed; 2001; 12(11):1253-65. PubMed ID: 11853390 [TBL] [Abstract][Full Text] [Related]
14. Contact guidance of rat fibroblasts on various implant materials. Walboomers XF; Croes HJ; Ginsel LA; Jansen JA J Biomed Mater Res; 1999 Nov; 47(2):204-12. PubMed ID: 10449631 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040 [TBL] [Abstract][Full Text] [Related]
16. Bone generation on PHBV matrices: an in vitro study. Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013 [TBL] [Abstract][Full Text] [Related]
17. Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes. Gugala Z; Gogolewski S Biomaterials; 2004 May; 25(12):2299-307. PubMed ID: 14741595 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
19. Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells. Oh SA; Won JE; Kim HW J Biomater Appl; 2012 Nov; 27(4):413-22. PubMed ID: 21750183 [TBL] [Abstract][Full Text] [Related]
20. The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone graft extender in impaction bone grafting. Bolland BJ; Kanczler JM; Ginty PJ; Howdle SM; Shakesheff KM; Dunlop DG; Oreffo RO Biomaterials; 2008 Aug; 29(22):3221-7. PubMed ID: 18456320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]