These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11168546)
1. Sympathectomy improves the ear's resistance to acoustic trauma--could stress render the ear more sensitive? Horner KC; Giraudet F; Lucciano M; Cazals Y Eur J Neurosci; 2001 Jan; 13(2):405-8. PubMed ID: 11168546 [TBL] [Abstract][Full Text] [Related]
2. Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hildesheimer M; Henkin Y; Pye A; Heled S; Sahartov E; Shabtai EL; Muchnik C Hear Res; 2002 Jan; 163(1-2):46-52. PubMed ID: 11788198 [TBL] [Abstract][Full Text] [Related]
3. Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear. Rajan R J Neurophysiol; 2001 Mar; 85(3):1257-69. PubMed ID: 11247994 [TBL] [Abstract][Full Text] [Related]
4. The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hildesheimer M; Sharon R; Muchnik C; Sahartov E; Rubinstein M Hear Res; 1991 Jan; 51(1):49-53. PubMed ID: 2013545 [TBL] [Abstract][Full Text] [Related]
5. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Zheng XY; Henderson D; McFadden SL; Hu BH Hear Res; 1997 Feb; 104(1-2):191-203. PubMed ID: 9119763 [TBL] [Abstract][Full Text] [Related]
6. Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday. Müller J; Janssen T Hear Res; 2008 Dec; 246(1-2):9-22. PubMed ID: 18848612 [TBL] [Abstract][Full Text] [Related]
7. Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Giraudet F; Horner KC; Cazals Y Hear Res; 2002 Dec; 174(1-2):239-48. PubMed ID: 12433414 [TBL] [Abstract][Full Text] [Related]
8. Temporary threshold shift due to noise exposure in guinea pigs under emotional stress. Muchnik C; Sahartov E; Peleg E; Hildesheimer M Hear Res; 1992 Feb; 58(1):101-6. PubMed ID: 1559900 [TBL] [Abstract][Full Text] [Related]
9. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model. Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042 [TBL] [Abstract][Full Text] [Related]
10. Reduced temporary and permanent hearing losses with multiple tone exposures. Cody AR; Johnstone BM Hear Res; 1982 Apr; 6(3):291-301. PubMed ID: 7085486 [TBL] [Abstract][Full Text] [Related]
11. Short-term effectiveness of medial efferents does not predict susceptibility to temporary threshold shift in the guinea pig. Zennaro O; Erre JP; Aran JM; Dauman R Acta Otolaryngol; 1998 Sep; 118(5):681-4. PubMed ID: 9840504 [TBL] [Abstract][Full Text] [Related]
12. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Yamasoba T; Dolan DF; Miller JM Hear Res; 1999 Jan; 127(1-2):31-40. PubMed ID: 9925014 [TBL] [Abstract][Full Text] [Related]
13. Crossed and uncrossed olivocochlear pathways exacerbate temporary shifts in hearing sensitivity after narrow band sound trauma in normal ears of animals with unilateral hearing impairment. Rajan R Audiol Neurootol; 2003; 8(5):250-62. PubMed ID: 12904680 [TBL] [Abstract][Full Text] [Related]
14. [Threshold shift and inner ear pathology in guinea pigs exposed to octave bands of noise at 63 Hz and 4 kHz]. Wang L Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Oct; 25(5):277-80, 318. PubMed ID: 2076336 [TBL] [Abstract][Full Text] [Related]
15. Temporary change of compound action potential amplitude after intense sound exposure. Homma T; Hasegawa M; Okamoto A; Yokoyama K; Tamura T ORL J Otorhinolaryngol Relat Spec; 1994; 56(1):19-23. PubMed ID: 8121679 [TBL] [Abstract][Full Text] [Related]
16. Additivity of loud-sound--induced threshold losses in the cat under conditions of active or inactive cochlear efferent-mediated protection. Rajan R J Neurophysiol; 1996 Apr; 75(4):1601-18. PubMed ID: 8727399 [TBL] [Abstract][Full Text] [Related]
17. The tonic sympathetic input to the cochlear vasculature in guinea pig. Laurikainen EA; Ren T; Miller JM; Nuttall AL; Quirk WS Hear Res; 1997 Mar; 105(1-2):141-5. PubMed ID: 9083811 [TBL] [Abstract][Full Text] [Related]
18. The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma. Yamasoba T; Dolan DF Hear Res; 1998 Jun; 120(1-2):143-51. PubMed ID: 9667438 [TBL] [Abstract][Full Text] [Related]
19. Efferent-mediated protection of the cochlear base from acoustic overexposure by low doses of lithium. Horner KC; Higueret D; Cazals Y Eur J Neurosci; 1998 Apr; 10(4):1524-7. PubMed ID: 9749806 [TBL] [Abstract][Full Text] [Related]
20. Noise-induced aspartate and glutamate efflux in the guinea pig cochlea and hearing loss. Jäger W; Goiny M; Herrera-Marschitz M; Brundin L; Fransson A; Canlon B Exp Brain Res; 2000 Oct; 134(4):426-34. PubMed ID: 11081824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]