These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11168548)

  • 41. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies.
    Ceranik K; Deng J; Heimrich B; Lübke J; Zhao S; Förster E; Frotscher M
    Eur J Neurosci; 1999 Dec; 11(12):4278-90. PubMed ID: 10594654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synaptic and intrinsic properties of neurons of origin of the perforant path in layer II of the rat entorhinal cortex in vitro.
    Jones RS
    Hippocampus; 1994 Jun; 4(3):335-53. PubMed ID: 7842056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex.
    Melzer S; Michael M; Caputi A; Eliava M; Fuchs EC; Whittington MA; Monyer H
    Science; 2012 Mar; 335(6075):1506-10. PubMed ID: 22442486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex.
    Cowan RL; Wilson CJ
    J Neurophysiol; 1994 Jan; 71(1):17-32. PubMed ID: 8158226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex.
    Hamam BN; Kennedy TE; Alonso A; Amaral DG
    J Comp Neurol; 2000 Mar; 418(4):457-72. PubMed ID: 10713573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus.
    Ambrogini P; Lattanzi D; Ciuffoli S; Agostini D; Bertini L; Stocchi V; Santi S; Cuppini R
    Brain Res; 2004 Aug; 1017(1-2):21-31. PubMed ID: 15261095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat.
    Quilichini P; Sirota A; Buzsáki G
    J Neurosci; 2010 Aug; 30(33):11128-42. PubMed ID: 20720120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrophysiological and morphological properties of neurons in layer 5 of the rat postrhinal cortex.
    Sills JB; Connors BW; Burwell RD
    Hippocampus; 2012 Sep; 22(9):1912-22. PubMed ID: 22522564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets.
    Kasper EM; Larkman AU; Lübke J; Blakemore C
    J Comp Neurol; 1994 Jan; 339(4):459-74. PubMed ID: 8144741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study.
    Leung LS; Roth L; Canning KJ
    J Neurophysiol; 1995 Jun; 73(6):2392-403. PubMed ID: 7666147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bilateral organization of parallel and serial pathways in the dentate gyrus demonstrated by current-source density analysis in the rat.
    Golarai G; Sutula TP
    J Neurophysiol; 1996 Jan; 75(1):329-42. PubMed ID: 8822561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
    Tang Q; Burgalossi A; Ebbesen CL; Ray S; Naumann R; Schmidt H; Spicher D; Brecht M
    Neuron; 2014 Dec; 84(6):1191-7. PubMed ID: 25482025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Developmental changes of inward rectifier currents in neurons of the rat entorhinal cortex.
    Richter H; Klee R; Heinemann U; Eder C
    Neurosci Lett; 1997 Jun; 228(2):139-41. PubMed ID: 9209118
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts.
    Penttonen M; Kamondi A; Sik A; Acsády L; Buzsáki G
    Hippocampus; 1997; 7(4):437-50. PubMed ID: 9287083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus.
    Dolorfo CL; Amaral DG
    J Comp Neurol; 1998 Aug; 398(1):25-48. PubMed ID: 9703026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex.
    Shay CF; Boardman IS; James NM; Hasselmo ME
    Hippocampus; 2012 Aug; 22(8):1733-49. PubMed ID: 22368047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex.
    Richter H; Heinemann U; Eder C
    Neurosci Lett; 2000 Mar; 281(1):33-6. PubMed ID: 10686409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. I. Electrophysiological properties of pyramidal neurons.
    Cho RH; Segawa S; Mizuno A; Kaneko T
    Neurosci Res; 2004 Dec; 50(4):381-94. PubMed ID: 15567476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hippocampus-mediated activation of superficial and deep layer neurons in the medial entorhinal cortex of the isolated guinea pig brain.
    Gnatkovsky V; de Curtis M
    J Neurosci; 2006 Jan; 26(3):873-81. PubMed ID: 16421307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey.
    Mohedano-Moriano A; Martinez-Marcos A; Pro-Sistiaga P; Blaizot X; Arroyo-Jimenez MM; Marcos P; Artacho-Pérula E; Insausti R
    Neuroscience; 2008 Jan; 151(1):255-71. PubMed ID: 18065153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.