These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11168570)

  • 1. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing
    Ferrario A; Saccomanno V; Zhang HY; Borisyuk R; Li WC
    J Neurosci; 2023 Feb; 43(8):1387-1404. PubMed ID: 36693757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamprey spinal interneurons and their roles in swimming activity.
    Buchanan JT
    Brain Behav Evol; 1996; 48(5):287-96. PubMed ID: 8932869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primitive roles for inhibitory interneurons in developing frog spinal cord.
    Li WC; Higashijima S; Parry DM; Roberts A; Soffe SR
    J Neurosci; 2004 Jun; 24(25):5840-8. PubMed ID: 15215306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1279-88. PubMed ID: 6296327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes--conditional oscillators after all?
    Aiken SP; Kuenzi FM; Dale N
    Eur J Neurosci; 2003 Jul; 18(2):333-43. PubMed ID: 12887415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.