These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1116868)

  • 21. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell.
    Hänsch GM; Hammer CH; Mayer MM; Shin ML
    J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chemotactic activity for neutrophil and eosinophil leucocytes of the trimolecular complex of the fifth, sixth and seventh components of human complement (C567) prepared in free solution by the 'reactive lysis' procedure.
    Lachmann PJ; Kay AB; Thompson RA
    Immunology; 1970 Dec; 19(6):895-9. PubMed ID: 5487541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the inhibition of C56 initiated lysis (reactive lysis). I. Description of the phenomenon and methods of assay.
    McLeod B; Baker P; Gewurz H
    Immunology; 1974 Jun; 26(6):1145-57. PubMed ID: 4137213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of the terminal stage of complement-mediated lysis (reactive lysis) by zinc and copper ions.
    Yamamoto K; Takahashi M
    Int Arch Allergy Appl Immunol; 1975; 48(5):653-63. PubMed ID: 1169223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9.
    Rollins SA; Sims PJ
    J Immunol; 1990 May; 144(9):3478-83. PubMed ID: 1691760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species-restricted target cell lysis by human complement: complement-lysed erythrocytes from heterologous and homologous species differ in their ratio of bound to inserted C9.
    Hu VW; Shin ML
    J Immunol; 1984 Oct; 133(4):2133-7. PubMed ID: 6470486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple nature of the third component of guinea-pig complement. II. Separation and description of two additional factors beta and d; preparation and characterization of four intermediate products.
    Wellensiek HJ; Klein PG
    Immunology; 1965 Jun; 8(6):604-17. PubMed ID: 5891629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes.
    Bhakdi S; Käflein R; Halstensen TS; Hugo F; Preissner KT; Mollnes TE
    Clin Exp Immunol; 1988 Dec; 74(3):459-64. PubMed ID: 2466593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human C1q.
    Volanakis JE; Kaplan MH
    J Immunol; 1974 Jul; 113(1):9-17. PubMed ID: 4208926
    [No Abstract]   [Full Text] [Related]  

  • 30. The C8-binding protein of human erythrocytes: interaction with the components of the complement-attack phase.
    Schönermark S; Filsinger S; Berger B; Hänsch GM
    Immunology; 1988 Apr; 63(4):585-90. PubMed ID: 3366469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The indiction by complement of a change in KSCN-dissociable red cell membrane lipids.
    Giavedoni EB; Dalmasso AP
    J Immunol; 1976 Apr; 116(4):1163-9. PubMed ID: 1254965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C3-independent immune haemolysis: mechanism of membrane attack complex formation.
    Kitamura H; Tsuboi M; Nagaki K
    Immunology; 1986 Sep; 59(1):147-51. PubMed ID: 3759127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The attack phase of human complement: differentiation between membrane binding and complex formation by the detection of neoantigen expression in situ. A morphometric immunoferritin study.
    Balkarowa-Ständer J; Rother U; Rauterberg EW
    J Immunol; 1981 Sep; 127(3):1089-93. PubMed ID: 7264298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specificity and structural analysis of a guinea pig transfer factor-like activity.
    Dunnick WA; Bach FH
    J Immunol; 1977 Jun; 118(6):1944-50. PubMed ID: 68075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of a low molecular weight complement inhibitor present in normal human serum.
    Baker PJ; Osofsky SG
    Clin Exp Immunol; 1981 Mar; 43(3):549-56. PubMed ID: 6912799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1984 Sep; 133(3):1453-63. PubMed ID: 6747293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The interaction of antibody and complement with model membranes (author's transl)].
    Inoue K
    Tanpakushitsu Kakusan Koso; 1974 Sep; 19(10):741-54. PubMed ID: 4612613
    [No Abstract]   [Full Text] [Related]  

  • 39. Inhibition of immune haemolysis by a serum factor found in C3-deficient subjects.
    Kitamura H; Tsuboi M
    Immunology; 1989 Feb; 66(2):264-9. PubMed ID: 2925225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction mechanisms of nascent C567 (reactive lysis). II. Killing of a rough form of Escherichia coli by C567, C8, and C9.
    Goldman JN; Austen KF
    J Infect Dis; 1974 Apr; 129(4):444-50. PubMed ID: 4206245
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.